Step | Hyp | Ref
| Expression |
1 | | oveq1 6556 |
. . . . 5
⊢ (𝑥 = 0 → (𝑥 ∙ 𝐵) = (0 ∙ 𝐵)) |
2 | | oveq1 6556 |
. . . . 5
⊢ (𝑥 = 0 → (𝑥 · 𝐵) = (0 · 𝐵)) |
3 | 1, 2 | eqeq12d 2625 |
. . . 4
⊢ (𝑥 = 0 → ((𝑥 ∙ 𝐵) = (𝑥 · 𝐵) ↔ (0 ∙ 𝐵) = (0 · 𝐵))) |
4 | | oveq1 6556 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 ∙ 𝐵) = (𝑦 ∙ 𝐵)) |
5 | | oveq1 6556 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 · 𝐵) = (𝑦 · 𝐵)) |
6 | 4, 5 | eqeq12d 2625 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝑥 ∙ 𝐵) = (𝑥 · 𝐵) ↔ (𝑦 ∙ 𝐵) = (𝑦 · 𝐵))) |
7 | | oveq1 6556 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → (𝑥 ∙ 𝐵) = ((𝑦 + 1) ∙ 𝐵)) |
8 | | oveq1 6556 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → (𝑥 · 𝐵) = ((𝑦 + 1) · 𝐵)) |
9 | 7, 8 | eqeq12d 2625 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → ((𝑥 ∙ 𝐵) = (𝑥 · 𝐵) ↔ ((𝑦 + 1) ∙ 𝐵) = ((𝑦 + 1) · 𝐵))) |
10 | | oveq1 6556 |
. . . . 5
⊢ (𝑥 = -𝑦 → (𝑥 ∙ 𝐵) = (-𝑦 ∙ 𝐵)) |
11 | | oveq1 6556 |
. . . . 5
⊢ (𝑥 = -𝑦 → (𝑥 · 𝐵) = (-𝑦 · 𝐵)) |
12 | 10, 11 | eqeq12d 2625 |
. . . 4
⊢ (𝑥 = -𝑦 → ((𝑥 ∙ 𝐵) = (𝑥 · 𝐵) ↔ (-𝑦 ∙ 𝐵) = (-𝑦 · 𝐵))) |
13 | | oveq1 6556 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑥 ∙ 𝐵) = (𝐴 ∙ 𝐵)) |
14 | | oveq1 6556 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑥 · 𝐵) = (𝐴 · 𝐵)) |
15 | 13, 14 | eqeq12d 2625 |
. . . 4
⊢ (𝑥 = 𝐴 → ((𝑥 ∙ 𝐵) = (𝑥 · 𝐵) ↔ (𝐴 ∙ 𝐵) = (𝐴 · 𝐵))) |
16 | | clmmulg.1 |
. . . . . . 7
⊢ 𝑉 = (Base‘𝑊) |
17 | | eqid 2610 |
. . . . . . 7
⊢
(0g‘𝑊) = (0g‘𝑊) |
18 | | clmmulg.2 |
. . . . . . 7
⊢ ∙ =
(.g‘𝑊) |
19 | 16, 17, 18 | mulg0 17369 |
. . . . . 6
⊢ (𝐵 ∈ 𝑉 → (0 ∙ 𝐵) = (0g‘𝑊)) |
20 | 19 | adantl 481 |
. . . . 5
⊢ ((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) → (0 ∙ 𝐵) = (0g‘𝑊)) |
21 | | eqid 2610 |
. . . . . 6
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
22 | | clmmulg.3 |
. . . . . 6
⊢ · = (
·𝑠 ‘𝑊) |
23 | 16, 21, 22, 17 | clm0vs 22703 |
. . . . 5
⊢ ((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) → (0 · 𝐵) = (0g‘𝑊)) |
24 | 20, 23 | eqtr4d 2647 |
. . . 4
⊢ ((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) → (0 ∙ 𝐵) = (0 · 𝐵)) |
25 | | oveq1 6556 |
. . . . . 6
⊢ ((𝑦 ∙ 𝐵) = (𝑦 · 𝐵) → ((𝑦 ∙ 𝐵)(+g‘𝑊)𝐵) = ((𝑦 · 𝐵)(+g‘𝑊)𝐵)) |
26 | | clmgrp 22676 |
. . . . . . . . . 10
⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ Grp) |
27 | | grpmnd 17252 |
. . . . . . . . . 10
⊢ (𝑊 ∈ Grp → 𝑊 ∈ Mnd) |
28 | 26, 27 | syl 17 |
. . . . . . . . 9
⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ Mnd) |
29 | 28 | ad2antrr 758 |
. . . . . . . 8
⊢ (((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) ∧ 𝑦 ∈ ℕ0) → 𝑊 ∈ Mnd) |
30 | | simpr 476 |
. . . . . . . 8
⊢ (((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈
ℕ0) |
31 | | simplr 788 |
. . . . . . . 8
⊢ (((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) ∧ 𝑦 ∈ ℕ0) → 𝐵 ∈ 𝑉) |
32 | | eqid 2610 |
. . . . . . . . 9
⊢
(+g‘𝑊) = (+g‘𝑊) |
33 | 16, 18, 32 | mulgnn0p1 17375 |
. . . . . . . 8
⊢ ((𝑊 ∈ Mnd ∧ 𝑦 ∈ ℕ0
∧ 𝐵 ∈ 𝑉) → ((𝑦 + 1) ∙ 𝐵) = ((𝑦 ∙ 𝐵)(+g‘𝑊)𝐵)) |
34 | 29, 30, 31, 33 | syl3anc 1318 |
. . . . . . 7
⊢ (((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) ∙ 𝐵) = ((𝑦 ∙ 𝐵)(+g‘𝑊)𝐵)) |
35 | | simpll 786 |
. . . . . . . . 9
⊢ (((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) ∧ 𝑦 ∈ ℕ0) → 𝑊 ∈
ℂMod) |
36 | | eqid 2610 |
. . . . . . . . . . . 12
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
37 | 21, 36 | clmzss 22686 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ ℂMod →
ℤ ⊆ (Base‘(Scalar‘𝑊))) |
38 | 37 | ad2antrr 758 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) ∧ 𝑦 ∈ ℕ0) → ℤ
⊆ (Base‘(Scalar‘𝑊))) |
39 | | nn0z 11277 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈
ℤ) |
40 | 39 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈
ℤ) |
41 | 38, 40 | sseldd 3569 |
. . . . . . . . 9
⊢ (((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈
(Base‘(Scalar‘𝑊))) |
42 | | 1zzd 11285 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) ∧ 𝑦 ∈ ℕ0) → 1 ∈
ℤ) |
43 | 38, 42 | sseldd 3569 |
. . . . . . . . 9
⊢ (((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) ∧ 𝑦 ∈ ℕ0) → 1 ∈
(Base‘(Scalar‘𝑊))) |
44 | 16, 21, 22, 36, 32 | clmvsdir 22699 |
. . . . . . . . 9
⊢ ((𝑊 ∈ ℂMod ∧ (𝑦 ∈
(Base‘(Scalar‘𝑊)) ∧ 1 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝐵 ∈ 𝑉)) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵)(+g‘𝑊)(1 · 𝐵))) |
45 | 35, 41, 43, 31, 44 | syl13anc 1320 |
. . . . . . . 8
⊢ (((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵)(+g‘𝑊)(1 · 𝐵))) |
46 | 16, 22 | clmvs1 22701 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) → (1 · 𝐵) = 𝐵) |
47 | 46 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) ∧ 𝑦 ∈ ℕ0) → (1 · 𝐵) = 𝐵) |
48 | 47 | oveq2d 6565 |
. . . . . . . 8
⊢ (((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) ∧ 𝑦 ∈ ℕ0) → ((𝑦 · 𝐵)(+g‘𝑊)(1 · 𝐵)) = ((𝑦 · 𝐵)(+g‘𝑊)𝐵)) |
49 | 45, 48 | eqtrd 2644 |
. . . . . . 7
⊢ (((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵)(+g‘𝑊)𝐵)) |
50 | 34, 49 | eqeq12d 2625 |
. . . . . 6
⊢ (((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) ∧ 𝑦 ∈ ℕ0) → (((𝑦 + 1) ∙ 𝐵) = ((𝑦 + 1) · 𝐵) ↔ ((𝑦 ∙ 𝐵)(+g‘𝑊)𝐵) = ((𝑦 · 𝐵)(+g‘𝑊)𝐵))) |
51 | 25, 50 | syl5ibr 235 |
. . . . 5
⊢ (((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) ∧ 𝑦 ∈ ℕ0) → ((𝑦 ∙ 𝐵) = (𝑦 · 𝐵) → ((𝑦 + 1) ∙ 𝐵) = ((𝑦 + 1) · 𝐵))) |
52 | 51 | ex 449 |
. . . 4
⊢ ((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) → (𝑦 ∈ ℕ0 → ((𝑦 ∙ 𝐵) = (𝑦 · 𝐵) → ((𝑦 + 1) ∙ 𝐵) = ((𝑦 + 1) · 𝐵)))) |
53 | | fveq2 6103 |
. . . . . 6
⊢ ((𝑦 ∙ 𝐵) = (𝑦 · 𝐵) → ((invg‘𝑊)‘(𝑦 ∙ 𝐵)) = ((invg‘𝑊)‘(𝑦 · 𝐵))) |
54 | 26 | ad2antrr 758 |
. . . . . . . 8
⊢ (((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) ∧ 𝑦 ∈ ℕ) → 𝑊 ∈ Grp) |
55 | | nnz 11276 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℤ) |
56 | 55 | adantl 481 |
. . . . . . . 8
⊢ (((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℤ) |
57 | | simplr 788 |
. . . . . . . 8
⊢ (((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) ∧ 𝑦 ∈ ℕ) → 𝐵 ∈ 𝑉) |
58 | | eqid 2610 |
. . . . . . . . 9
⊢
(invg‘𝑊) = (invg‘𝑊) |
59 | 16, 18, 58 | mulgneg 17383 |
. . . . . . . 8
⊢ ((𝑊 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝐵 ∈ 𝑉) → (-𝑦 ∙ 𝐵) = ((invg‘𝑊)‘(𝑦 ∙ 𝐵))) |
60 | 54, 56, 57, 59 | syl3anc 1318 |
. . . . . . 7
⊢ (((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) ∧ 𝑦 ∈ ℕ) → (-𝑦 ∙ 𝐵) = ((invg‘𝑊)‘(𝑦 ∙ 𝐵))) |
61 | | simpll 786 |
. . . . . . . . 9
⊢ (((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) ∧ 𝑦 ∈ ℕ) → 𝑊 ∈ ℂMod) |
62 | 37 | ad2antrr 758 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) ∧ 𝑦 ∈ ℕ) → ℤ ⊆
(Base‘(Scalar‘𝑊))) |
63 | 62, 56 | sseldd 3569 |
. . . . . . . . 9
⊢ (((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ (Base‘(Scalar‘𝑊))) |
64 | 16, 21, 22, 58, 36, 61, 57, 63 | clmvsneg 22708 |
. . . . . . . 8
⊢ (((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) ∧ 𝑦 ∈ ℕ) →
((invg‘𝑊)‘(𝑦 · 𝐵)) = (-𝑦 · 𝐵)) |
65 | 64 | eqcomd 2616 |
. . . . . . 7
⊢ (((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) ∧ 𝑦 ∈ ℕ) → (-𝑦 · 𝐵) = ((invg‘𝑊)‘(𝑦 · 𝐵))) |
66 | 60, 65 | eqeq12d 2625 |
. . . . . 6
⊢ (((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) ∧ 𝑦 ∈ ℕ) → ((-𝑦 ∙ 𝐵) = (-𝑦 · 𝐵) ↔ ((invg‘𝑊)‘(𝑦 ∙ 𝐵)) = ((invg‘𝑊)‘(𝑦 · 𝐵)))) |
67 | 53, 66 | syl5ibr 235 |
. . . . 5
⊢ (((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) ∧ 𝑦 ∈ ℕ) → ((𝑦 ∙ 𝐵) = (𝑦 · 𝐵) → (-𝑦 ∙ 𝐵) = (-𝑦 · 𝐵))) |
68 | 67 | ex 449 |
. . . 4
⊢ ((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) → (𝑦 ∈ ℕ → ((𝑦 ∙ 𝐵) = (𝑦 · 𝐵) → (-𝑦 ∙ 𝐵) = (-𝑦 · 𝐵)))) |
69 | 3, 6, 9, 12, 15, 24, 52, 68 | zindd 11354 |
. . 3
⊢ ((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉) → (𝐴 ∈ ℤ → (𝐴 ∙ 𝐵) = (𝐴 · 𝐵))) |
70 | 69 | 3impia 1253 |
. 2
⊢ ((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ ℤ) → (𝐴 ∙ 𝐵) = (𝐴 · 𝐵)) |
71 | 70 | 3com23 1263 |
1
⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ 𝑉) → (𝐴 ∙ 𝐵) = (𝐴 · 𝐵)) |