Step | Hyp | Ref
| Expression |
1 | | nnnn0 11176 |
. . . 4
⊢ (𝑠 ∈ ℕ → 𝑠 ∈
ℕ0) |
2 | | cpmadugsum.a |
. . . . 5
⊢ 𝐴 = (𝑁 Mat 𝑅) |
3 | | cpmadugsum.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐴) |
4 | | cpmadugsum.p |
. . . . 5
⊢ 𝑃 = (Poly1‘𝑅) |
5 | | cpmadugsum.y |
. . . . 5
⊢ 𝑌 = (𝑁 Mat 𝑃) |
6 | | cpmadugsum.t |
. . . . 5
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
7 | | cpmadugsum.x |
. . . . 5
⊢ 𝑋 = (var1‘𝑅) |
8 | | cpmadugsum.e |
. . . . 5
⊢ ↑ =
(.g‘(mulGrp‘𝑃)) |
9 | | cpmadugsum.m |
. . . . 5
⊢ · = (
·𝑠 ‘𝑌) |
10 | | cpmadugsum.r |
. . . . 5
⊢ × =
(.r‘𝑌) |
11 | | cpmadugsum.1 |
. . . . 5
⊢ 1 =
(1r‘𝑌) |
12 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | cpmadugsumlemB 20498 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) |
13 | 1, 12 | sylanr1 682 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) |
14 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | cpmadugsumlemC 20499 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑇‘𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) |
15 | 1, 14 | sylanr1 682 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑇‘𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) |
16 | 13, 15 | oveq12d 6567 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − ((𝑇‘𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) − (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))))) |
17 | | nncn 10905 |
. . . . . . . . 9
⊢ (𝑠 ∈ ℕ → 𝑠 ∈
ℂ) |
18 | | npcan1 10334 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℂ → ((𝑠 − 1) + 1) = 𝑠) |
19 | 18 | eqcomd 2616 |
. . . . . . . . 9
⊢ (𝑠 ∈ ℂ → 𝑠 = ((𝑠 − 1) + 1)) |
20 | 17, 19 | syl 17 |
. . . . . . . 8
⊢ (𝑠 ∈ ℕ → 𝑠 = ((𝑠 − 1) + 1)) |
21 | 20 | oveq2d 6565 |
. . . . . . 7
⊢ (𝑠 ∈ ℕ →
(0...𝑠) = (0...((𝑠 − 1) +
1))) |
22 | 21 | mpteq1d 4666 |
. . . . . 6
⊢ (𝑠 ∈ ℕ → (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))) = (𝑖 ∈ (0...((𝑠 − 1) + 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) |
23 | 22 | oveq2d 6565 |
. . . . 5
⊢ (𝑠 ∈ ℕ → (𝑌 Σg
(𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) = (𝑌 Σg (𝑖 ∈ (0...((𝑠 − 1) + 1)) ↦
(((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) |
24 | 23 | ad2antrl 760 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) = (𝑌 Σg (𝑖 ∈ (0...((𝑠 − 1) + 1)) ↦
(((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) |
25 | | eqid 2610 |
. . . . 5
⊢
(Base‘𝑌) =
(Base‘𝑌) |
26 | | cpmadugsum.g |
. . . . 5
⊢ + =
(+g‘𝑌) |
27 | | crngring 18381 |
. . . . . . . . . 10
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
28 | 27 | anim2i 591 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
29 | 28 | 3adant3 1074 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
30 | 4, 5 | pmatring 20317 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring) |
31 | 29, 30 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ Ring) |
32 | | ringcmn 18404 |
. . . . . . 7
⊢ (𝑌 ∈ Ring → 𝑌 ∈ CMnd) |
33 | 31, 32 | syl 17 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ CMnd) |
34 | 33 | adantr 480 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑌 ∈ CMnd) |
35 | | nnm1nn0 11211 |
. . . . . 6
⊢ (𝑠 ∈ ℕ → (𝑠 − 1) ∈
ℕ0) |
36 | 35 | ad2antrl 760 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑠 − 1) ∈
ℕ0) |
37 | | simpll1 1093 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → 𝑁 ∈ Fin) |
38 | 27 | 3ad2ant2 1076 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
39 | 38 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑅 ∈ Ring) |
40 | 39 | adantr 480 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → 𝑅 ∈ Ring) |
41 | | elmapi 7765 |
. . . . . . . . . 10
⊢ (𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)) → 𝑏:(0...𝑠)⟶𝐵) |
42 | 21 | feq2d 5944 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℕ → (𝑏:(0...𝑠)⟶𝐵 ↔ 𝑏:(0...((𝑠 − 1) + 1))⟶𝐵)) |
43 | 41, 42 | syl5ibcom 234 |
. . . . . . . . 9
⊢ (𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)) → (𝑠 ∈ ℕ → 𝑏:(0...((𝑠 − 1) + 1))⟶𝐵)) |
44 | 43 | impcom 445 |
. . . . . . . 8
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → 𝑏:(0...((𝑠 − 1) + 1))⟶𝐵) |
45 | 44 | adantl 481 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑏:(0...((𝑠 − 1) + 1))⟶𝐵) |
46 | 45 | ffvelrnda 6267 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → (𝑏‘𝑖) ∈ 𝐵) |
47 | | elfznn0 12302 |
. . . . . . . 8
⊢ (𝑖 ∈ (0...((𝑠 − 1) + 1)) → 𝑖 ∈
ℕ0) |
48 | 47 | adantl 481 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → 𝑖 ∈ ℕ0) |
49 | | 1nn0 11185 |
. . . . . . . 8
⊢ 1 ∈
ℕ0 |
50 | 49 | a1i 11 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → 1 ∈
ℕ0) |
51 | 48, 50 | nn0addcld 11232 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → (𝑖 + 1) ∈
ℕ0) |
52 | 2, 3, 6, 4, 5, 25,
9, 8, 7 | mat2pmatscmxcl 20364 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑏‘𝑖) ∈ 𝐵 ∧ (𝑖 + 1) ∈ ℕ0)) →
(((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
53 | 37, 40, 46, 51, 52 | syl22anc 1319 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...((𝑠 − 1) + 1))) → (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
54 | 25, 26, 34, 36, 53 | gsummptfzsplit 18155 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...((𝑠 − 1) + 1)) ↦
(((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) = ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) + (𝑌 Σg (𝑖 ∈ {((𝑠 − 1) + 1)} ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))))) |
55 | | ringmnd 18379 |
. . . . . . . 8
⊢ (𝑌 ∈ Ring → 𝑌 ∈ Mnd) |
56 | 31, 55 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ Mnd) |
57 | 56 | adantr 480 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑌 ∈ Mnd) |
58 | | ovex 6577 |
. . . . . . 7
⊢ ((𝑠 − 1) + 1) ∈
V |
59 | 58 | a1i 11 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑠 − 1) + 1) ∈ V) |
60 | | simpl1 1057 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑁 ∈ Fin) |
61 | | nn0fz0 12306 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ ℕ0
↔ 𝑠 ∈ (0...𝑠)) |
62 | 1, 61 | sylib 207 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℕ → 𝑠 ∈ (0...𝑠)) |
63 | | ffvelrn 6265 |
. . . . . . . . . 10
⊢ ((𝑏:(0...𝑠)⟶𝐵 ∧ 𝑠 ∈ (0...𝑠)) → (𝑏‘𝑠) ∈ 𝐵) |
64 | 41, 62, 63 | syl2anr 494 |
. . . . . . . . 9
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝑏‘𝑠) ∈ 𝐵) |
65 | 1 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → 𝑠 ∈ ℕ0) |
66 | 49 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → 1 ∈
ℕ0) |
67 | 65, 66 | nn0addcld 11232 |
. . . . . . . . 9
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝑠 + 1) ∈
ℕ0) |
68 | 64, 67 | jca 553 |
. . . . . . . 8
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → ((𝑏‘𝑠) ∈ 𝐵 ∧ (𝑠 + 1) ∈
ℕ0)) |
69 | 68 | adantl 481 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑏‘𝑠) ∈ 𝐵 ∧ (𝑠 + 1) ∈
ℕ0)) |
70 | 2, 3, 6, 4, 5, 25,
9, 8, 7 | mat2pmatscmxcl 20364 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑏‘𝑠) ∈ 𝐵 ∧ (𝑠 + 1) ∈ ℕ0)) →
(((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) ∈ (Base‘𝑌)) |
71 | 60, 39, 69, 70 | syl21anc 1317 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) ∈ (Base‘𝑌)) |
72 | | oveq1 6556 |
. . . . . . . . 9
⊢ (𝑖 = ((𝑠 − 1) + 1) → (𝑖 + 1) = (((𝑠 − 1) + 1) + 1)) |
73 | 72 | oveq1d 6564 |
. . . . . . . 8
⊢ (𝑖 = ((𝑠 − 1) + 1) → ((𝑖 + 1) ↑ 𝑋) = ((((𝑠 − 1) + 1) + 1) ↑ 𝑋)) |
74 | | fveq2 6103 |
. . . . . . . . 9
⊢ (𝑖 = ((𝑠 − 1) + 1) → (𝑏‘𝑖) = (𝑏‘((𝑠 − 1) + 1))) |
75 | 74 | fveq2d 6107 |
. . . . . . . 8
⊢ (𝑖 = ((𝑠 − 1) + 1) → (𝑇‘(𝑏‘𝑖)) = (𝑇‘(𝑏‘((𝑠 − 1) + 1)))) |
76 | 73, 75 | oveq12d 6567 |
. . . . . . 7
⊢ (𝑖 = ((𝑠 − 1) + 1) → (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) = (((((𝑠 − 1) + 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘((𝑠 − 1) + 1))))) |
77 | 17, 18 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ ℕ → ((𝑠 − 1) + 1) = 𝑠) |
78 | 77 | oveq1d 6564 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℕ → (((𝑠 − 1) + 1) + 1) = (𝑠 + 1)) |
79 | 78 | oveq1d 6564 |
. . . . . . . . 9
⊢ (𝑠 ∈ ℕ → ((((𝑠 − 1) + 1) + 1) ↑ 𝑋) = ((𝑠 + 1) ↑ 𝑋)) |
80 | 77 | fveq2d 6107 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℕ → (𝑏‘((𝑠 − 1) + 1)) = (𝑏‘𝑠)) |
81 | 80 | fveq2d 6107 |
. . . . . . . . 9
⊢ (𝑠 ∈ ℕ → (𝑇‘(𝑏‘((𝑠 − 1) + 1))) = (𝑇‘(𝑏‘𝑠))) |
82 | 79, 81 | oveq12d 6567 |
. . . . . . . 8
⊢ (𝑠 ∈ ℕ →
(((((𝑠 − 1) + 1) + 1)
↑
𝑋) · (𝑇‘(𝑏‘((𝑠 − 1) + 1)))) = (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) |
83 | 82 | ad2antrl 760 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (((((𝑠 − 1) + 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘((𝑠 − 1) + 1)))) = (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) |
84 | 76, 83 | sylan9eqr 2666 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 = ((𝑠 − 1) + 1)) → (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) = (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) |
85 | 25, 57, 59, 71, 84 | gsumsnd 18175 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ {((𝑠 − 1) + 1)} ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) = (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) |
86 | 85 | oveq2d 6565 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) + (𝑌 Σg (𝑖 ∈ {((𝑠 − 1) + 1)} ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) = ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))))) |
87 | 24, 54, 86 | 3eqtrd 2648 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) = ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))))) |
88 | 1 | ad2antrl 760 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑠 ∈ ℕ0) |
89 | 4, 5 | pmatlmod 20318 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ LMod) |
90 | 28, 89 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ LMod) |
91 | 90 | 3adant3 1074 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ LMod) |
92 | 91 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑌 ∈ LMod) |
93 | 92 | adantr 480 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑌 ∈ LMod) |
94 | 4 | ply1ring 19439 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
95 | 27, 94 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ CRing → 𝑃 ∈ Ring) |
96 | 95 | 3ad2ant2 1076 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ Ring) |
97 | | eqid 2610 |
. . . . . . . . . . . 12
⊢
(mulGrp‘𝑃) =
(mulGrp‘𝑃) |
98 | 97 | ringmgp 18376 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ Ring →
(mulGrp‘𝑃) ∈
Mnd) |
99 | 96, 98 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (mulGrp‘𝑃) ∈ Mnd) |
100 | 99 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (mulGrp‘𝑃) ∈ Mnd) |
101 | 100 | adantr 480 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (mulGrp‘𝑃) ∈ Mnd) |
102 | | elfznn0 12302 |
. . . . . . . . 9
⊢ (𝑖 ∈ (0...𝑠) → 𝑖 ∈ ℕ0) |
103 | 102 | adantl 481 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑖 ∈ ℕ0) |
104 | | eqid 2610 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑃) =
(Base‘𝑃) |
105 | 7, 4, 104 | vr1cl 19408 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃)) |
106 | 27, 105 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ CRing → 𝑋 ∈ (Base‘𝑃)) |
107 | 106 | 3ad2ant2 1076 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑋 ∈ (Base‘𝑃)) |
108 | 107 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑋 ∈ (Base‘𝑃)) |
109 | 108 | adantr 480 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑋 ∈ (Base‘𝑃)) |
110 | 97, 104 | mgpbas 18318 |
. . . . . . . . 9
⊢
(Base‘𝑃) =
(Base‘(mulGrp‘𝑃)) |
111 | 110, 8 | mulgnn0cl 17381 |
. . . . . . . 8
⊢
(((mulGrp‘𝑃)
∈ Mnd ∧ 𝑖 ∈
ℕ0 ∧ 𝑋
∈ (Base‘𝑃))
→ (𝑖 ↑ 𝑋) ∈ (Base‘𝑃)) |
112 | 101, 103,
109, 111 | syl3anc 1318 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 ↑ 𝑋) ∈ (Base‘𝑃)) |
113 | 4 | ply1crng 19389 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
114 | 113 | anim2i 591 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing)) |
115 | 114 | 3adant3 1074 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing)) |
116 | 5 | matsca2 20045 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝑌)) |
117 | 115, 116 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 = (Scalar‘𝑌)) |
118 | 117 | eqcomd 2616 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (Scalar‘𝑌) = 𝑃) |
119 | 118 | fveq2d 6107 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃)) |
120 | 119 | eleq2d 2673 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝑖 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝑖 ↑ 𝑋) ∈ (Base‘𝑃))) |
121 | 120 | adantr 480 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑖 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝑖 ↑ 𝑋) ∈ (Base‘𝑃))) |
122 | 121 | adantr 480 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝑖 ↑ 𝑋) ∈ (Base‘𝑃))) |
123 | 112, 122 | mpbird 246 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌))) |
124 | 31 | adantr 480 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑌 ∈ Ring) |
125 | 124 | adantr 480 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑌 ∈ Ring) |
126 | | simpll1 1093 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑁 ∈ Fin) |
127 | 39 | adantr 480 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑅 ∈ Ring) |
128 | | simpll3 1095 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑀 ∈ 𝐵) |
129 | 6, 2, 3, 4, 5 | mat2pmatbas 20350 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
130 | 126, 127,
128, 129 | syl3anc 1318 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
131 | 88 | adantr 480 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑠 ∈ ℕ0) |
132 | | simprr 792 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) |
133 | 132 | anim1i 590 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠))) |
134 | 2, 3, 4, 5, 6 | m2pmfzmap 20371 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0)
∧ (𝑏 ∈ (𝐵 ↑𝑚
(0...𝑠)) ∧ 𝑖 ∈ (0...𝑠))) → (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) |
135 | 126, 127,
131, 133, 134 | syl31anc 1321 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) |
136 | 25, 10 | ringcl 18384 |
. . . . . . 7
⊢ ((𝑌 ∈ Ring ∧ (𝑇‘𝑀) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) → ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
137 | 125, 130,
135, 136 | syl3anc 1318 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
138 | | eqid 2610 |
. . . . . . 7
⊢
(Scalar‘𝑌) =
(Scalar‘𝑌) |
139 | | eqid 2610 |
. . . . . . 7
⊢
(Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌)) |
140 | 25, 138, 9, 139 | lmodvscl 18703 |
. . . . . 6
⊢ ((𝑌 ∈ LMod ∧ (𝑖 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌)) ∧ ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) → ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))) ∈ (Base‘𝑌)) |
141 | 93, 123, 137, 140 | syl3anc 1318 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))) ∈ (Base‘𝑌)) |
142 | 25, 26, 34, 88, 141 | gsummptfzsplitl 18156 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) + (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))))) |
143 | | 0nn0 11184 |
. . . . . . . 8
⊢ 0 ∈
ℕ0 |
144 | 143 | a1i 11 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 0 ∈
ℕ0) |
145 | | eqid 2610 |
. . . . . . . . . . . . 13
⊢
(0g‘(mulGrp‘𝑃)) =
(0g‘(mulGrp‘𝑃)) |
146 | 110, 145,
8 | mulg0 17369 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ (Base‘𝑃) → (0 ↑ 𝑋) = (0g‘(mulGrp‘𝑃))) |
147 | 107, 146 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (0 ↑ 𝑋) = (0g‘(mulGrp‘𝑃))) |
148 | 147 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (0 ↑ 𝑋) =
(0g‘(mulGrp‘𝑃))) |
149 | 148 | oveq1d 6564 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((0 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) =
((0g‘(mulGrp‘𝑃)) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) |
150 | | eqid 2610 |
. . . . . . . . . . . . 13
⊢
(1r‘𝑃) = (1r‘𝑃) |
151 | 97, 150 | ringidval 18326 |
. . . . . . . . . . . 12
⊢
(1r‘𝑃) = (0g‘(mulGrp‘𝑃)) |
152 | 151 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) →
(1r‘𝑃) =
(0g‘(mulGrp‘𝑃))) |
153 | 152 | eqcomd 2616 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) →
(0g‘(mulGrp‘𝑃)) = (1r‘𝑃)) |
154 | 153 | oveq1d 6564 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) →
((0g‘(mulGrp‘𝑃)) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) = ((1r‘𝑃) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) |
155 | 117 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑃 = (Scalar‘𝑌)) |
156 | 155 | fveq2d 6107 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) →
(1r‘𝑃) =
(1r‘(Scalar‘𝑌))) |
157 | 156 | oveq1d 6564 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) →
((1r‘𝑃)
·
((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) =
((1r‘(Scalar‘𝑌)) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) |
158 | 27, 129 | syl3an2 1352 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
159 | 158 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
160 | | simpl 472 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑏:(0...𝑠)⟶𝐵 ∧ 𝑠 ∈ ℕ) → 𝑏:(0...𝑠)⟶𝐵) |
161 | | elnn0uz 11601 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 ∈ ℕ0
↔ 𝑠 ∈
(ℤ≥‘0)) |
162 | 1, 161 | sylib 207 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 ∈ ℕ → 𝑠 ∈
(ℤ≥‘0)) |
163 | | eluzfz1 12219 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 ∈
(ℤ≥‘0) → 0 ∈ (0...𝑠)) |
164 | 162, 163 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ ℕ → 0 ∈
(0...𝑠)) |
165 | 164 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑏:(0...𝑠)⟶𝐵 ∧ 𝑠 ∈ ℕ) → 0 ∈ (0...𝑠)) |
166 | 160, 165 | ffvelrnd 6268 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑏:(0...𝑠)⟶𝐵 ∧ 𝑠 ∈ ℕ) → (𝑏‘0) ∈ 𝐵) |
167 | 166 | ex 449 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏:(0...𝑠)⟶𝐵 → (𝑠 ∈ ℕ → (𝑏‘0) ∈ 𝐵)) |
168 | 41, 167 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)) → (𝑠 ∈ ℕ → (𝑏‘0) ∈ 𝐵)) |
169 | 168 | impcom 445 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝑏‘0) ∈ 𝐵) |
170 | 169 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑏‘0) ∈ 𝐵) |
171 | 6, 2, 3, 4, 5 | mat2pmatbas 20350 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘0) ∈ 𝐵) → (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌)) |
172 | 60, 39, 170, 171 | syl3anc 1318 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌)) |
173 | 25, 10 | ringcl 18384 |
. . . . . . . . . . . 12
⊢ ((𝑌 ∈ Ring ∧ (𝑇‘𝑀) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌)) → ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌)) |
174 | 124, 159,
172, 173 | syl3anc 1318 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌)) |
175 | | eqid 2610 |
. . . . . . . . . . . 12
⊢
(1r‘(Scalar‘𝑌)) =
(1r‘(Scalar‘𝑌)) |
176 | 25, 138, 9, 175 | lmodvs1 18714 |
. . . . . . . . . . 11
⊢ ((𝑌 ∈ LMod ∧ ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌)) →
((1r‘(Scalar‘𝑌)) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) |
177 | 92, 174, 176 | syl2anc 691 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) →
((1r‘(Scalar‘𝑌)) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) |
178 | 157, 177 | eqtrd 2644 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) →
((1r‘𝑃)
·
((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) |
179 | 149, 154,
178 | 3eqtrd 2648 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((0 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) |
180 | 179, 174 | eqeltrd 2688 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((0 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) ∈ (Base‘𝑌)) |
181 | | oveq1 6556 |
. . . . . . . . 9
⊢ (𝑖 = 0 → (𝑖 ↑ 𝑋) = (0 ↑ 𝑋)) |
182 | | fveq2 6103 |
. . . . . . . . . . 11
⊢ (𝑖 = 0 → (𝑏‘𝑖) = (𝑏‘0)) |
183 | 182 | fveq2d 6107 |
. . . . . . . . . 10
⊢ (𝑖 = 0 → (𝑇‘(𝑏‘𝑖)) = (𝑇‘(𝑏‘0))) |
184 | 183 | oveq2d 6565 |
. . . . . . . . 9
⊢ (𝑖 = 0 → ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))) = ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) |
185 | 181, 184 | oveq12d 6567 |
. . . . . . . 8
⊢ (𝑖 = 0 → ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))) = ((0 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) |
186 | 185 | adantl 481 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 = 0) → ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))) = ((0 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) |
187 | 25, 57, 144, 180, 186 | gsumsnd 18175 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) = ((0 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) |
188 | 110, 151,
8 | mulg0 17369 |
. . . . . . . . 9
⊢ (𝑋 ∈ (Base‘𝑃) → (0 ↑ 𝑋) = (1r‘𝑃)) |
189 | 107, 188 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (0 ↑ 𝑋) = (1r‘𝑃)) |
190 | 189 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (0 ↑ 𝑋) = (1r‘𝑃)) |
191 | 190 | oveq1d 6564 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((0 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) = ((1r‘𝑃) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) |
192 | 187, 191,
178 | 3eqtrd 2648 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) = ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) |
193 | 192 | oveq2d 6565 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) + (𝑌 Σg (𝑖 ∈ {0} ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) + ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) |
194 | 142, 193 | eqtrd 2644 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) + ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) |
195 | 87, 194 | oveq12d 6567 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) − (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = (((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) − ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) + ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
196 | | fzfid 12634 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (0...(𝑠 − 1)) ∈
Fin) |
197 | | simpll1 1093 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → 𝑁 ∈ Fin) |
198 | 39 | adantr 480 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → 𝑅 ∈ Ring) |
199 | 41 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → 𝑏:(0...𝑠)⟶𝐵) |
200 | 199 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → 𝑏:(0...𝑠)⟶𝐵) |
201 | | nnz 11276 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ ℕ → 𝑠 ∈
ℤ) |
202 | | fzoval 12340 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ ℤ →
(0..^𝑠) = (0...(𝑠 − 1))) |
203 | 201, 202 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∈ ℕ →
(0..^𝑠) = (0...(𝑠 − 1))) |
204 | 203 | eqcomd 2616 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ ℕ →
(0...(𝑠 − 1)) =
(0..^𝑠)) |
205 | 204 | eleq2d 2673 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ ℕ → (𝑖 ∈ (0...(𝑠 − 1)) ↔ 𝑖 ∈ (0..^𝑠))) |
206 | | elfzofz 12354 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (0..^𝑠) → 𝑖 ∈ (0...𝑠)) |
207 | 205, 206 | syl6bi 242 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ ℕ → (𝑖 ∈ (0...(𝑠 − 1)) → 𝑖 ∈ (0...𝑠))) |
208 | 207 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) → (𝑖 ∈ (0...(𝑠 − 1)) → 𝑖 ∈ (0...𝑠))) |
209 | 208 | imp 444 |
. . . . . . . . . 10
⊢ (((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → 𝑖 ∈ (0...𝑠)) |
210 | 200, 209 | ffvelrnd 6268 |
. . . . . . . . 9
⊢ (((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → (𝑏‘𝑖) ∈ 𝐵) |
211 | 210 | adantll 746 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → (𝑏‘𝑖) ∈ 𝐵) |
212 | | elfznn0 12302 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (0...(𝑠 − 1)) → 𝑖 ∈ ℕ0) |
213 | 212 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → 𝑖 ∈ ℕ0) |
214 | 49 | a1i 11 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → 1 ∈
ℕ0) |
215 | 213, 214 | nn0addcld 11232 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → (𝑖 + 1) ∈
ℕ0) |
216 | 197, 198,
211, 215, 52 | syl22anc 1319 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (0...(𝑠 − 1))) → (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
217 | 216 | ralrimiva 2949 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ∀𝑖 ∈ (0...(𝑠 − 1))(((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
218 | 25, 34, 196, 217 | gsummptcl 18189 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) ∈ (Base‘𝑌)) |
219 | 25, 26 | cmncom 18032 |
. . . . 5
⊢ ((𝑌 ∈ CMnd ∧ (𝑌 Σg
(𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) ∈ (Base‘𝑌) ∧ (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) ∈ (Base‘𝑌)) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) = ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))))) |
220 | 34, 218, 71, 219 | syl3anc 1318 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) = ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))))) |
221 | 220 | oveq1d 6564 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) − ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) + ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) = (((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) + ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
222 | | ringgrp 18375 |
. . . . . . . . 9
⊢ (𝑌 ∈ Ring → 𝑌 ∈ Grp) |
223 | 31, 222 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ Grp) |
224 | 223 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑌 ∈ Grp) |
225 | | fzfid 12634 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (1...𝑠) ∈ Fin) |
226 | 92 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑌 ∈ LMod) |
227 | 100 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (mulGrp‘𝑃) ∈ Mnd) |
228 | | elfznn 12241 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℕ) |
229 | 228 | nnnn0d 11228 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℕ0) |
230 | 229 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 ∈ ℕ0) |
231 | 108 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑋 ∈ (Base‘𝑃)) |
232 | 227, 230,
231, 111 | syl3anc 1318 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 ↑ 𝑋) ∈ (Base‘𝑃)) |
233 | 117 | fveq2d 6107 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (Base‘𝑃) = (Base‘(Scalar‘𝑌))) |
234 | 233 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (Base‘𝑃) =
(Base‘(Scalar‘𝑌))) |
235 | 234 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (Base‘𝑃) = (Base‘(Scalar‘𝑌))) |
236 | 232, 235 | eleqtrd 2690 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌))) |
237 | 124 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑌 ∈ Ring) |
238 | 159 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑇‘𝑀) ∈ (Base‘𝑌)) |
239 | | simpll1 1093 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑁 ∈ Fin) |
240 | 39 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑅 ∈ Ring) |
241 | 199 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑏:(0...𝑠)⟶𝐵) |
242 | 241 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑏:(0...𝑠)⟶𝐵) |
243 | | 1eluzge0 11608 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
(ℤ≥‘0) |
244 | | fzss1 12251 |
. . . . . . . . . . . . . . . . 17
⊢ (1 ∈
(ℤ≥‘0) → (1...𝑠) ⊆ (0...𝑠)) |
245 | 243, 244 | mp1i 13 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ ℕ →
(1...𝑠) ⊆ (0...𝑠)) |
246 | 245 | sseld 3567 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∈ ℕ → (𝑖 ∈ (1...𝑠) → 𝑖 ∈ (0...𝑠))) |
247 | 246 | ad2antrl 760 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑖 ∈ (1...𝑠) → 𝑖 ∈ (0...𝑠))) |
248 | 247 | imp 444 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 ∈ (0...𝑠)) |
249 | 242, 248 | ffvelrnd 6268 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑏‘𝑖) ∈ 𝐵) |
250 | 6, 2, 3, 4, 5 | mat2pmatbas 20350 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘𝑖) ∈ 𝐵) → (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) |
251 | 239, 240,
249, 250 | syl3anc 1318 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) |
252 | 237, 238,
251, 136 | syl3anc 1318 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
253 | 226, 236,
252, 140 | syl3anc 1318 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))) ∈ (Base‘𝑌)) |
254 | 253 | ralrimiva 2949 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ∀𝑖 ∈ (1...𝑠)((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))) ∈ (Base‘𝑌)) |
255 | 25, 34, 225, 254 | gsummptcl 18189 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) ∈ (Base‘𝑌)) |
256 | | cpmadugsum.s |
. . . . . . . 8
⊢ − =
(-g‘𝑌) |
257 | 25, 26, 256 | grpaddsubass 17328 |
. . . . . . 7
⊢ ((𝑌 ∈ Grp ∧ ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) ∈ (Base‘𝑌) ∧ (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) ∈ (Base‘𝑌) ∧ (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) ∈ (Base‘𝑌))) → (((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))))) |
258 | 224, 71, 218, 255, 257 | syl13anc 1320 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))))) |
259 | | oveq1 6556 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑖 → (𝑥 − 1) = (𝑖 − 1)) |
260 | 259 | oveq1d 6564 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑖 → ((𝑥 − 1) + 1) = ((𝑖 − 1) + 1)) |
261 | 260 | oveq1d 6564 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑖 → (((𝑥 − 1) + 1) ↑ 𝑋) = (((𝑖 − 1) + 1) ↑ 𝑋)) |
262 | 259 | fveq2d 6107 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑖 → (𝑏‘(𝑥 − 1)) = (𝑏‘(𝑖 − 1))) |
263 | 262 | fveq2d 6107 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑖 → (𝑇‘(𝑏‘(𝑥 − 1))) = (𝑇‘(𝑏‘(𝑖 − 1)))) |
264 | 261, 263 | oveq12d 6567 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑖 → ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))) = ((((𝑖 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))) |
265 | 264 | cbvmptv 4678 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1))))) = (𝑖 ∈ (1...𝑠) ↦ ((((𝑖 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))) |
266 | 228 | nncnd 10913 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...𝑠) → 𝑖 ∈ ℂ) |
267 | 266 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 ∈ ℂ) |
268 | | npcan1 10334 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ ℂ → ((𝑖 − 1) + 1) = 𝑖) |
269 | 267, 268 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 − 1) + 1) = 𝑖) |
270 | 269 | oveq1d 6564 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → (((𝑖 − 1) + 1) ↑ 𝑋) = (𝑖 ↑ 𝑋)) |
271 | 270 | oveq1d 6564 |
. . . . . . . . . . . . 13
⊢ ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → ((((𝑖 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) = ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))) |
272 | 271 | mpteq2dva 4672 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ ℕ → (𝑖 ∈ (1...𝑠) ↦ ((((𝑖 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))) = (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))))) |
273 | 265, 272 | syl5eq 2656 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ ℕ → (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1))))) = (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))))) |
274 | 273 | oveq2d 6565 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℕ → (𝑌 Σg
(𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))))) |
275 | 274 | ad2antrl 760 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))))) |
276 | 275 | oveq1d 6564 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑌 Σg (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))))) |
277 | | eqid 2610 |
. . . . . . . . . . 11
⊢
(0g‘𝑌) = (0g‘𝑌) |
278 | | 1zzd 11285 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 1 ∈
ℤ) |
279 | | 0zd 11266 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 0 ∈
ℤ) |
280 | 36 | nn0zd 11356 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑠 − 1) ∈ ℤ) |
281 | | oveq1 6556 |
. . . . . . . . . . . . 13
⊢ (𝑖 = (𝑥 − 1) → (𝑖 + 1) = ((𝑥 − 1) + 1)) |
282 | 281 | oveq1d 6564 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝑥 − 1) → ((𝑖 + 1) ↑ 𝑋) = (((𝑥 − 1) + 1) ↑ 𝑋)) |
283 | | fveq2 6103 |
. . . . . . . . . . . . 13
⊢ (𝑖 = (𝑥 − 1) → (𝑏‘𝑖) = (𝑏‘(𝑥 − 1))) |
284 | 283 | fveq2d 6107 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝑥 − 1) → (𝑇‘(𝑏‘𝑖)) = (𝑇‘(𝑏‘(𝑥 − 1)))) |
285 | 282, 284 | oveq12d 6567 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝑥 − 1) → (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) = ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1))))) |
286 | 25, 277, 34, 278, 279, 280, 216, 285 | gsummptshft 18159 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) = (𝑌 Σg (𝑥 ∈ ((0 + 1)...((𝑠 − 1) + 1)) ↦
((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1))))))) |
287 | | 0p1e1 11009 |
. . . . . . . . . . . . . 14
⊢ (0 + 1) =
1 |
288 | 287 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (0 + 1) =
1) |
289 | 77 | ad2antrl 760 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑠 − 1) + 1) = 𝑠) |
290 | 288, 289 | oveq12d 6567 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((0 + 1)...((𝑠 − 1) + 1)) = (1...𝑠)) |
291 | 290 | mpteq1d 4666 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑥 ∈ ((0 + 1)...((𝑠 − 1) + 1)) ↦ ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1))))) = (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))) |
292 | 291 | oveq2d 6565 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑥 ∈ ((0 + 1)...((𝑠 − 1) + 1)) ↦
((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))) = (𝑌 Σg (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1))))))) |
293 | 286, 292 | eqtrd 2644 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) = (𝑌 Σg (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1))))))) |
294 | 293 | oveq1d 6564 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = ((𝑌 Σg (𝑥 ∈ (1...𝑠) ↦ ((((𝑥 − 1) + 1) ↑ 𝑋) · (𝑇‘(𝑏‘(𝑥 − 1)))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))))) |
295 | | ringabl 18403 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ Ring → 𝑌 ∈ Abel) |
296 | 31, 295 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ Abel) |
297 | 296 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → 𝑌 ∈ Abel) |
298 | 228 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → 𝑖 ∈ ℕ) |
299 | | nnz 11276 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ ℕ → 𝑖 ∈
ℤ) |
300 | | elfzm1b 12287 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ ℤ ∧ 𝑠 ∈ ℤ) → (𝑖 ∈ (1...𝑠) ↔ (𝑖 − 1) ∈ (0...(𝑠 − 1)))) |
301 | 299, 201,
300 | syl2an 493 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (𝑖 ∈ (1...𝑠) ↔ (𝑖 − 1) ∈ (0...(𝑠 − 1)))) |
302 | 203 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ ℕ ∧ 𝑠 ∈ ℕ) →
(0..^𝑠) = (0...(𝑠 − 1))) |
303 | 302 | eqcomd 2616 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ ℕ ∧ 𝑠 ∈ ℕ) →
(0...(𝑠 − 1)) =
(0..^𝑠)) |
304 | 303 | eleq2d 2673 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ ℕ ∧ 𝑠 ∈ ℕ) → ((𝑖 − 1) ∈ (0...(𝑠 − 1)) ↔ (𝑖 − 1) ∈ (0..^𝑠))) |
305 | | elfzofz 12354 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 − 1) ∈ (0..^𝑠) → (𝑖 − 1) ∈ (0...𝑠)) |
306 | 304, 305 | syl6bi 242 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ ℕ ∧ 𝑠 ∈ ℕ) → ((𝑖 − 1) ∈ (0...(𝑠 − 1)) → (𝑖 − 1) ∈ (0...𝑠))) |
307 | 301, 306 | sylbid 229 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 ∈ ℕ ∧ 𝑠 ∈ ℕ) → (𝑖 ∈ (1...𝑠) → (𝑖 − 1) ∈ (0...𝑠))) |
308 | 307 | expimpd 627 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ ℕ → ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 − 1) ∈ (0...𝑠))) |
309 | 298, 308 | mpcom 37 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∈ ℕ ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 − 1) ∈ (0...𝑠)) |
310 | 309 | ex 449 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ ℕ → (𝑖 ∈ (1...𝑠) → (𝑖 − 1) ∈ (0...𝑠))) |
311 | 310 | ad2antrl 760 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑖 ∈ (1...𝑠) → (𝑖 − 1) ∈ (0...𝑠))) |
312 | 311 | imp 444 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑖 − 1) ∈ (0...𝑠)) |
313 | 242, 312 | ffvelrnd 6268 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑏‘(𝑖 − 1)) ∈ 𝐵) |
314 | 2, 3, 6, 4, 5, 25,
9, 8, 7 | mat2pmatscmxcl 20364 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑏‘(𝑖 − 1)) ∈ 𝐵 ∧ 𝑖 ∈ ℕ0)) → ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ∈ (Base‘𝑌)) |
315 | 239, 240,
313, 230, 314 | syl22anc 1319 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ∈ (Base‘𝑌)) |
316 | | eqid 2610 |
. . . . . . . . 9
⊢ (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))) = (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1))))) |
317 | | eqid 2610 |
. . . . . . . . 9
⊢ (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) = (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) |
318 | 25, 256, 297, 225, 315, 253, 316, 317 | gsummptfidmsub 18173 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))))) |
319 | 276, 294,
318 | 3eqtr4d 2654 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))))) |
320 | 319 | oveq2d 6565 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + ((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))))) = ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))))) |
321 | 224 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → 𝑌 ∈ Grp) |
322 | 25, 256 | grpsubcl 17318 |
. . . . . . . . . 10
⊢ ((𝑌 ∈ Grp ∧ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) ∈ (Base‘𝑌) ∧ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))) ∈ (Base‘𝑌)) → (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) ∈ (Base‘𝑌)) |
323 | 321, 315,
253, 322 | syl3anc 1318 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) ∈ (Base‘𝑌)) |
324 | 323 | ralrimiva 2949 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ∀𝑖 ∈ (1...𝑠)(((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) ∈ (Base‘𝑌)) |
325 | 25, 34, 225, 324 | gsummptcl 18189 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) ∈ (Base‘𝑌)) |
326 | 25, 26 | cmncom 18032 |
. . . . . . 7
⊢ ((𝑌 ∈ CMnd ∧ (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) ∈ (Base‘𝑌) ∧ (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) ∈ (Base‘𝑌)) → ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))))) |
327 | 34, 71, 325, 326 | syl3anc 1318 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))))) |
328 | 258, 320,
327 | 3eqtrd 2648 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))))) |
329 | 328 | oveq1d 6564 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) = (((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) |
330 | 25, 26 | mndcl 17124 |
. . . . . 6
⊢ ((𝑌 ∈ Mnd ∧ (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) ∈ (Base‘𝑌) ∧ (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) ∈ (Base‘𝑌)) → ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) ∈ (Base‘𝑌)) |
331 | 57, 71, 218, 330 | syl3anc 1318 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) ∈ (Base‘𝑌)) |
332 | 25, 26, 256, 297, 331, 255, 174 | ablsubsub4 18047 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) = (((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) + ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
333 | 25, 26, 256 | grpaddsubass 17328 |
. . . . 5
⊢ ((𝑌 ∈ Grp ∧ ((𝑌 Σg
(𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) ∈ (Base‘𝑌) ∧ (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) ∈ (Base‘𝑌) ∧ ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌))) → (((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
334 | 224, 325,
71, 174, 333 | syl13anc 1320 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
335 | 329, 332,
334 | 3eqtr3d 2652 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) + (𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) + ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
336 | 6, 2, 3, 4, 5 | mat2pmatbas 20350 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘(𝑖 − 1)) ∈ 𝐵) → (𝑇‘(𝑏‘(𝑖 − 1))) ∈ (Base‘𝑌)) |
337 | 239, 240,
313, 336 | syl3anc 1318 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (𝑇‘(𝑏‘(𝑖 − 1))) ∈ (Base‘𝑌)) |
338 | 25, 9, 138, 139, 256, 226, 236, 337, 252 | lmodsubdi 18743 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) = (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) |
339 | 338 | eqcomd 2616 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) ∧ 𝑖 ∈ (1...𝑠)) → (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))) = ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) |
340 | 339 | mpteq2dva 4672 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) = (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) |
341 | 340 | oveq2d 6565 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) = (𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))))) |
342 | 341 | oveq1d 6564 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ (((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘(𝑖 − 1)))) − ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
343 | 221, 335,
342 | 3eqtrd 2648 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (((𝑌 Σg (𝑖 ∈ (0...(𝑠 − 1)) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) + (((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠)))) − ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖)))))) + ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |
344 | 16, 195, 343 | 3eqtrd 2648 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑𝑚 (0...𝑠)))) → (((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − ((𝑇‘𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) |