MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplbas2 Structured version   Visualization version   GIF version

Theorem mplbas2 19291
Description: An alternative expression for the set of polynomials, as the smallest subalgebra of the set of power series that contains all the variable generators. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mplbas2.p 𝑃 = (𝐼 mPoly 𝑅)
mplbas2.s 𝑆 = (𝐼 mPwSer 𝑅)
mplbas2.v 𝑉 = (𝐼 mVar 𝑅)
mplbas2.a 𝐴 = (AlgSpan‘𝑆)
mplbas2.i (𝜑𝐼𝑊)
mplbas2.r (𝜑𝑅 ∈ CRing)
Assertion
Ref Expression
mplbas2 (𝜑 → (𝐴‘ran 𝑉) = (Base‘𝑃))

Proof of Theorem mplbas2
Dummy variables 𝑢 𝑘 𝑣 𝑥 𝑧 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplbas2.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 mplbas2.i . . . . 5 (𝜑𝐼𝑊)
3 mplbas2.r . . . . 5 (𝜑𝑅 ∈ CRing)
41, 2, 3psrassa 19235 . . . 4 (𝜑𝑆 ∈ AssAlg)
5 mplbas2.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑅)
6 eqid 2610 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
7 eqid 2610 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
85, 1, 6, 7mplbasss 19253 . . . . 5 (Base‘𝑃) ⊆ (Base‘𝑆)
98a1i 11 . . . 4 (𝜑 → (Base‘𝑃) ⊆ (Base‘𝑆))
10 mplbas2.v . . . . . . . 8 𝑉 = (𝐼 mVar 𝑅)
11 crngring 18381 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
123, 11syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
131, 10, 7, 2, 12mvrf 19245 . . . . . . 7 (𝜑𝑉:𝐼⟶(Base‘𝑆))
1413ffnd 5959 . . . . . 6 (𝜑𝑉 Fn 𝐼)
152adantr 480 . . . . . . . 8 ((𝜑𝑥𝐼) → 𝐼𝑊)
1612adantr 480 . . . . . . . 8 ((𝜑𝑥𝐼) → 𝑅 ∈ Ring)
17 simpr 476 . . . . . . . 8 ((𝜑𝑥𝐼) → 𝑥𝐼)
185, 10, 6, 15, 16, 17mvrcl 19270 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑉𝑥) ∈ (Base‘𝑃))
1918ralrimiva 2949 . . . . . 6 (𝜑 → ∀𝑥𝐼 (𝑉𝑥) ∈ (Base‘𝑃))
20 ffnfv 6295 . . . . . 6 (𝑉:𝐼⟶(Base‘𝑃) ↔ (𝑉 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑉𝑥) ∈ (Base‘𝑃)))
2114, 19, 20sylanbrc 695 . . . . 5 (𝜑𝑉:𝐼⟶(Base‘𝑃))
22 frn 5966 . . . . 5 (𝑉:𝐼⟶(Base‘𝑃) → ran 𝑉 ⊆ (Base‘𝑃))
2321, 22syl 17 . . . 4 (𝜑 → ran 𝑉 ⊆ (Base‘𝑃))
24 mplbas2.a . . . . 5 𝐴 = (AlgSpan‘𝑆)
2524, 7aspss 19153 . . . 4 ((𝑆 ∈ AssAlg ∧ (Base‘𝑃) ⊆ (Base‘𝑆) ∧ ran 𝑉 ⊆ (Base‘𝑃)) → (𝐴‘ran 𝑉) ⊆ (𝐴‘(Base‘𝑃)))
264, 9, 23, 25syl3anc 1318 . . 3 (𝜑 → (𝐴‘ran 𝑉) ⊆ (𝐴‘(Base‘𝑃)))
271, 5, 6, 2, 12mplsubrg 19261 . . . 4 (𝜑 → (Base‘𝑃) ∈ (SubRing‘𝑆))
281, 5, 6, 2, 12mpllss 19259 . . . 4 (𝜑 → (Base‘𝑃) ∈ (LSubSp‘𝑆))
29 eqid 2610 . . . . 5 (LSubSp‘𝑆) = (LSubSp‘𝑆)
3024, 7, 29aspid 19151 . . . 4 ((𝑆 ∈ AssAlg ∧ (Base‘𝑃) ∈ (SubRing‘𝑆) ∧ (Base‘𝑃) ∈ (LSubSp‘𝑆)) → (𝐴‘(Base‘𝑃)) = (Base‘𝑃))
314, 27, 28, 30syl3anc 1318 . . 3 (𝜑 → (𝐴‘(Base‘𝑃)) = (Base‘𝑃))
3226, 31sseqtrd 3604 . 2 (𝜑 → (𝐴‘ran 𝑉) ⊆ (Base‘𝑃))
33 eqid 2610 . . . . . 6 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
34 eqid 2610 . . . . . 6 (0g𝑅) = (0g𝑅)
35 eqid 2610 . . . . . 6 (1r𝑅) = (1r𝑅)
362adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑃)) → 𝐼𝑊)
37 eqid 2610 . . . . . 6 ( ·𝑠𝑃) = ( ·𝑠𝑃)
3812adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑃)) → 𝑅 ∈ Ring)
39 simpr 476 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑃)) → 𝑥 ∈ (Base‘𝑃))
405, 33, 34, 35, 36, 6, 37, 38, 39mplcoe1 19286 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑃)) → 𝑥 = (𝑃 Σg (𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))))))
41 eqid 2610 . . . . . 6 (0g𝑃) = (0g𝑃)
425mplring 19273 . . . . . . . . 9 ((𝐼𝑊𝑅 ∈ Ring) → 𝑃 ∈ Ring)
432, 12, 42syl2anc 691 . . . . . . . 8 (𝜑𝑃 ∈ Ring)
44 ringabl 18403 . . . . . . . 8 (𝑃 ∈ Ring → 𝑃 ∈ Abel)
4543, 44syl 17 . . . . . . 7 (𝜑𝑃 ∈ Abel)
4645adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑃)) → 𝑃 ∈ Abel)
47 ovex 6577 . . . . . . . 8 (ℕ0𝑚 𝐼) ∈ V
4847rabex 4740 . . . . . . 7 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
4948a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑃)) → {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
5023, 8syl6ss 3580 . . . . . . . . . 10 (𝜑 → ran 𝑉 ⊆ (Base‘𝑆))
5124, 7aspsubrg 19152 . . . . . . . . . 10 ((𝑆 ∈ AssAlg ∧ ran 𝑉 ⊆ (Base‘𝑆)) → (𝐴‘ran 𝑉) ∈ (SubRing‘𝑆))
524, 50, 51syl2anc 691 . . . . . . . . 9 (𝜑 → (𝐴‘ran 𝑉) ∈ (SubRing‘𝑆))
535, 1, 6mplval2 19252 . . . . . . . . . . 11 𝑃 = (𝑆s (Base‘𝑃))
5453subsubrg 18629 . . . . . . . . . 10 ((Base‘𝑃) ∈ (SubRing‘𝑆) → ((𝐴‘ran 𝑉) ∈ (SubRing‘𝑃) ↔ ((𝐴‘ran 𝑉) ∈ (SubRing‘𝑆) ∧ (𝐴‘ran 𝑉) ⊆ (Base‘𝑃))))
5527, 54syl 17 . . . . . . . . 9 (𝜑 → ((𝐴‘ran 𝑉) ∈ (SubRing‘𝑃) ↔ ((𝐴‘ran 𝑉) ∈ (SubRing‘𝑆) ∧ (𝐴‘ran 𝑉) ⊆ (Base‘𝑃))))
5652, 32, 55mpbir2and 959 . . . . . . . 8 (𝜑 → (𝐴‘ran 𝑉) ∈ (SubRing‘𝑃))
57 subrgsubg 18609 . . . . . . . 8 ((𝐴‘ran 𝑉) ∈ (SubRing‘𝑃) → (𝐴‘ran 𝑉) ∈ (SubGrp‘𝑃))
5856, 57syl 17 . . . . . . 7 (𝜑 → (𝐴‘ran 𝑉) ∈ (SubGrp‘𝑃))
5958adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑃)) → (𝐴‘ran 𝑉) ∈ (SubGrp‘𝑃))
605mpllmod 19272 . . . . . . . . . 10 ((𝐼𝑊𝑅 ∈ Ring) → 𝑃 ∈ LMod)
612, 12, 60syl2anc 691 . . . . . . . . 9 (𝜑𝑃 ∈ LMod)
6261ad2antrr 758 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑃 ∈ LMod)
6324, 7, 29asplss 19150 . . . . . . . . . . 11 ((𝑆 ∈ AssAlg ∧ ran 𝑉 ⊆ (Base‘𝑆)) → (𝐴‘ran 𝑉) ∈ (LSubSp‘𝑆))
644, 50, 63syl2anc 691 . . . . . . . . . 10 (𝜑 → (𝐴‘ran 𝑉) ∈ (LSubSp‘𝑆))
651, 2, 12psrlmod 19222 . . . . . . . . . . 11 (𝜑𝑆 ∈ LMod)
66 eqid 2610 . . . . . . . . . . . 12 (LSubSp‘𝑃) = (LSubSp‘𝑃)
6753, 29, 66lsslss 18782 . . . . . . . . . . 11 ((𝑆 ∈ LMod ∧ (Base‘𝑃) ∈ (LSubSp‘𝑆)) → ((𝐴‘ran 𝑉) ∈ (LSubSp‘𝑃) ↔ ((𝐴‘ran 𝑉) ∈ (LSubSp‘𝑆) ∧ (𝐴‘ran 𝑉) ⊆ (Base‘𝑃))))
6865, 28, 67syl2anc 691 . . . . . . . . . 10 (𝜑 → ((𝐴‘ran 𝑉) ∈ (LSubSp‘𝑃) ↔ ((𝐴‘ran 𝑉) ∈ (LSubSp‘𝑆) ∧ (𝐴‘ran 𝑉) ⊆ (Base‘𝑃))))
6964, 32, 68mpbir2and 959 . . . . . . . . 9 (𝜑 → (𝐴‘ran 𝑉) ∈ (LSubSp‘𝑃))
7069ad2antrr 758 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝐴‘ran 𝑉) ∈ (LSubSp‘𝑃))
71 eqid 2610 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
725, 71, 6, 33, 39mplelf 19254 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑃)) → 𝑥:{𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
7372ffvelrnda 6267 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑥𝑘) ∈ (Base‘𝑅))
745, 36, 38mplsca 19266 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑃)) → 𝑅 = (Scalar‘𝑃))
7574adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑅 = (Scalar‘𝑃))
7675fveq2d 6107 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
7773, 76eleqtrd 2690 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑥𝑘) ∈ (Base‘(Scalar‘𝑃)))
782ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝐼𝑊)
79 eqid 2610 . . . . . . . . . 10 (mulGrp‘𝑃) = (mulGrp‘𝑃)
80 eqid 2610 . . . . . . . . . 10 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
813ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑅 ∈ CRing)
82 simpr 476 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
835, 33, 34, 35, 78, 79, 80, 10, 81, 82mplcoe2 19290 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))) = ((mulGrp‘𝑃) Σg (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧)))))
84 eqid 2610 . . . . . . . . . . 11 (1r𝑃) = (1r𝑃)
8579, 84ringidval 18326 . . . . . . . . . 10 (1r𝑃) = (0g‘(mulGrp‘𝑃))
865mplcrng 19274 . . . . . . . . . . . . 13 ((𝐼𝑊𝑅 ∈ CRing) → 𝑃 ∈ CRing)
872, 3, 86syl2anc 691 . . . . . . . . . . . 12 (𝜑𝑃 ∈ CRing)
8879crngmgp 18378 . . . . . . . . . . . 12 (𝑃 ∈ CRing → (mulGrp‘𝑃) ∈ CMnd)
8987, 88syl 17 . . . . . . . . . . 11 (𝜑 → (mulGrp‘𝑃) ∈ CMnd)
9089ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (mulGrp‘𝑃) ∈ CMnd)
9156ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝐴‘ran 𝑉) ∈ (SubRing‘𝑃))
9279subrgsubm 18616 . . . . . . . . . . 11 ((𝐴‘ran 𝑉) ∈ (SubRing‘𝑃) → (𝐴‘ran 𝑉) ∈ (SubMnd‘(mulGrp‘𝑃)))
9391, 92syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝐴‘ran 𝑉) ∈ (SubMnd‘(mulGrp‘𝑃)))
94 simplll 794 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧𝐼) → 𝜑)
9533psrbag 19185 . . . . . . . . . . . . . . . 16 (𝐼𝑊 → (𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↔ (𝑘:𝐼⟶ℕ0 ∧ (𝑘 “ ℕ) ∈ Fin)))
9636, 95syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝑃)) → (𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↔ (𝑘:𝐼⟶ℕ0 ∧ (𝑘 “ ℕ) ∈ Fin)))
9796biimpa 500 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑘:𝐼⟶ℕ0 ∧ (𝑘 “ ℕ) ∈ Fin))
9897simpld 474 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑘:𝐼⟶ℕ0)
9998ffvelrnda 6267 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧𝐼) → (𝑘𝑧) ∈ ℕ0)
10024, 7aspssid 19154 . . . . . . . . . . . . . . 15 ((𝑆 ∈ AssAlg ∧ ran 𝑉 ⊆ (Base‘𝑆)) → ran 𝑉 ⊆ (𝐴‘ran 𝑉))
1014, 50, 100syl2anc 691 . . . . . . . . . . . . . 14 (𝜑 → ran 𝑉 ⊆ (𝐴‘ran 𝑉))
102101ad3antrrr 762 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧𝐼) → ran 𝑉 ⊆ (𝐴‘ran 𝑉))
10314ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑉 Fn 𝐼)
104 fnfvelrn 6264 . . . . . . . . . . . . . 14 ((𝑉 Fn 𝐼𝑧𝐼) → (𝑉𝑧) ∈ ran 𝑉)
105103, 104sylan 487 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧𝐼) → (𝑉𝑧) ∈ ran 𝑉)
106102, 105sseldd 3569 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧𝐼) → (𝑉𝑧) ∈ (𝐴‘ran 𝑉))
10779, 6mgpbas 18318 . . . . . . . . . . . . 13 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
108 eqid 2610 . . . . . . . . . . . . . 14 (.r𝑃) = (.r𝑃)
10979, 108mgpplusg 18316 . . . . . . . . . . . . 13 (.r𝑃) = (+g‘(mulGrp‘𝑃))
110108subrgmcl 18615 . . . . . . . . . . . . . 14 (((𝐴‘ran 𝑉) ∈ (SubRing‘𝑃) ∧ 𝑢 ∈ (𝐴‘ran 𝑉) ∧ 𝑣 ∈ (𝐴‘ran 𝑉)) → (𝑢(.r𝑃)𝑣) ∈ (𝐴‘ran 𝑉))
11156, 110syl3an1 1351 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (𝐴‘ran 𝑉) ∧ 𝑣 ∈ (𝐴‘ran 𝑉)) → (𝑢(.r𝑃)𝑣) ∈ (𝐴‘ran 𝑉))
11284subrg1cl 18611 . . . . . . . . . . . . . 14 ((𝐴‘ran 𝑉) ∈ (SubRing‘𝑃) → (1r𝑃) ∈ (𝐴‘ran 𝑉))
11356, 112syl 17 . . . . . . . . . . . . 13 (𝜑 → (1r𝑃) ∈ (𝐴‘ran 𝑉))
114107, 80, 109, 89, 32, 111, 85, 113mulgnn0subcl 17377 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘𝑧) ∈ ℕ0 ∧ (𝑉𝑧) ∈ (𝐴‘ran 𝑉)) → ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧)) ∈ (𝐴‘ran 𝑉))
11594, 99, 106, 114syl3anc 1318 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧𝐼) → ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧)) ∈ (𝐴‘ran 𝑉))
116 eqid 2610 . . . . . . . . . . 11 (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))) = (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧)))
117115, 116fmptd 6292 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))):𝐼⟶(𝐴‘ran 𝑉))
118 mptexg 6389 . . . . . . . . . . . . 13 (𝐼𝑊 → (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))) ∈ V)
1192, 118syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))) ∈ V)
120119ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))) ∈ V)
121 funmpt 5840 . . . . . . . . . . . 12 Fun (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧)))
122121a1i 11 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → Fun (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))))
123 fvex 6113 . . . . . . . . . . . 12 (1r𝑃) ∈ V
124123a1i 11 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (1r𝑃) ∈ V)
12597simprd 478 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑘 “ ℕ) ∈ Fin)
126 elrabi 3328 . . . . . . . . . . . . . . 15 (𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} → 𝑘 ∈ (ℕ0𝑚 𝐼))
127 elmapi 7765 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℕ0𝑚 𝐼) → 𝑘:𝐼⟶ℕ0)
128127adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ (ℕ0𝑚 𝐼)) → 𝑘:𝐼⟶ℕ0)
1292ad2antrr 758 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ (ℕ0𝑚 𝐼)) → 𝐼𝑊)
130 frnnn0supp 11226 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑊𝑘:𝐼⟶ℕ0) → (𝑘 supp 0) = (𝑘 “ ℕ))
131129, 128, 130syl2anc 691 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ (ℕ0𝑚 𝐼)) → (𝑘 supp 0) = (𝑘 “ ℕ))
132 eqimss 3620 . . . . . . . . . . . . . . . . 17 ((𝑘 supp 0) = (𝑘 “ ℕ) → (𝑘 supp 0) ⊆ (𝑘 “ ℕ))
133131, 132syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ (ℕ0𝑚 𝐼)) → (𝑘 supp 0) ⊆ (𝑘 “ ℕ))
134 c0ex 9913 . . . . . . . . . . . . . . . . 17 0 ∈ V
135134a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ (ℕ0𝑚 𝐼)) → 0 ∈ V)
136128, 133, 129, 135suppssr 7213 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ (ℕ0𝑚 𝐼)) ∧ 𝑧 ∈ (𝐼 ∖ (𝑘 “ ℕ))) → (𝑘𝑧) = 0)
137126, 136sylanl2 681 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (𝑘 “ ℕ))) → (𝑘𝑧) = 0)
138137oveq1d 6564 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (𝑘 “ ℕ))) → ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧)) = (0(.g‘(mulGrp‘𝑃))(𝑉𝑧)))
1392ad3antrrr 762 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (𝑘 “ ℕ))) → 𝐼𝑊)
14012ad3antrrr 762 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (𝑘 “ ℕ))) → 𝑅 ∈ Ring)
141 eldifi 3694 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝐼 ∖ (𝑘 “ ℕ)) → 𝑧𝐼)
142141adantl 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (𝑘 “ ℕ))) → 𝑧𝐼)
1435, 10, 6, 139, 140, 142mvrcl 19270 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (𝑘 “ ℕ))) → (𝑉𝑧) ∈ (Base‘𝑃))
144107, 85, 80mulg0 17369 . . . . . . . . . . . . . 14 ((𝑉𝑧) ∈ (Base‘𝑃) → (0(.g‘(mulGrp‘𝑃))(𝑉𝑧)) = (1r𝑃))
145143, 144syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (𝑘 “ ℕ))) → (0(.g‘(mulGrp‘𝑃))(𝑉𝑧)) = (1r𝑃))
146138, 145eqtrd 2644 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (𝑘 “ ℕ))) → ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧)) = (1r𝑃))
147146, 78suppss2 7216 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))) supp (1r𝑃)) ⊆ (𝑘 “ ℕ))
148 suppssfifsupp 8173 . . . . . . . . . . 11 ((((𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))) ∈ V ∧ Fun (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))) ∧ (1r𝑃) ∈ V) ∧ ((𝑘 “ ℕ) ∈ Fin ∧ ((𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))) supp (1r𝑃)) ⊆ (𝑘 “ ℕ))) → (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))) finSupp (1r𝑃))
149120, 122, 124, 125, 147, 148syl32anc 1326 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))) finSupp (1r𝑃))
15085, 90, 78, 93, 117, 149gsumsubmcl 18142 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((mulGrp‘𝑃) Σg (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧)))) ∈ (𝐴‘ran 𝑉))
15183, 150eqeltrd 2688 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))) ∈ (𝐴‘ran 𝑉))
152 eqid 2610 . . . . . . . . 9 (Scalar‘𝑃) = (Scalar‘𝑃)
153 eqid 2610 . . . . . . . . 9 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
154152, 37, 153, 66lssvscl 18776 . . . . . . . 8 (((𝑃 ∈ LMod ∧ (𝐴‘ran 𝑉) ∈ (LSubSp‘𝑃)) ∧ ((𝑥𝑘) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))) ∈ (𝐴‘ran 𝑉))) → ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))) ∈ (𝐴‘ran 𝑉))
15562, 70, 77, 151, 154syl22anc 1319 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))) ∈ (𝐴‘ran 𝑉))
156 eqid 2610 . . . . . . 7 (𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) = (𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))))
157155, 156fmptd 6292 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑃)) → (𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))):{𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(𝐴‘ran 𝑉))
15847mptrabex 6392 . . . . . . . . 9 (𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) ∈ V
159 funmpt 5840 . . . . . . . . 9 Fun (𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))))
160 fvex 6113 . . . . . . . . 9 (0g𝑃) ∈ V
161158, 159, 1603pm3.2i 1232 . . . . . . . 8 ((𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) ∈ V ∧ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) ∧ (0g𝑃) ∈ V)
162161a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑃)) → ((𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) ∈ V ∧ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) ∧ (0g𝑃) ∈ V))
1635, 1, 7, 34, 6mplelbas 19251 . . . . . . . . . 10 (𝑥 ∈ (Base‘𝑃) ↔ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 finSupp (0g𝑅)))
164163simprbi 479 . . . . . . . . 9 (𝑥 ∈ (Base‘𝑃) → 𝑥 finSupp (0g𝑅))
165164adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑃)) → 𝑥 finSupp (0g𝑅))
166165fsuppimpd 8165 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑃)) → (𝑥 supp (0g𝑅)) ∈ Fin)
167 ssid 3587 . . . . . . . . . . . . 13 (𝑥 supp (0g𝑅)) ⊆ (𝑥 supp (0g𝑅))
168167a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑃)) → (𝑥 supp (0g𝑅)) ⊆ (𝑥 supp (0g𝑅)))
169 fvex 6113 . . . . . . . . . . . . 13 (0g𝑅) ∈ V
170169a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑃)) → (0g𝑅) ∈ V)
17172, 168, 49, 170suppssr 7213 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ (𝑥 supp (0g𝑅)))) → (𝑥𝑘) = (0g𝑅))
17274fveq2d 6107 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑃)) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
173172adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ (𝑥 supp (0g𝑅)))) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
174171, 173eqtrd 2644 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ (𝑥 supp (0g𝑅)))) → (𝑥𝑘) = (0g‘(Scalar‘𝑃)))
175174oveq1d 6564 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ (𝑥 supp (0g𝑅)))) → ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))) = ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))))
176 eldifi 3694 . . . . . . . . . 10 (𝑘 ∈ ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ (𝑥 supp (0g𝑅))) → 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
17712ad2antrr 758 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring)
1785, 6, 34, 35, 33, 78, 177, 82mplmon 19284 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))) ∈ (Base‘𝑃))
179 eqid 2610 . . . . . . . . . . . 12 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝑃))
1806, 152, 37, 179, 41lmod0vs 18719 . . . . . . . . . . 11 ((𝑃 ∈ LMod ∧ (𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))) ∈ (Base‘𝑃)) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))) = (0g𝑃))
18162, 178, 180syl2anc 691 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))) = (0g𝑃))
182176, 181sylan2 490 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ (𝑥 supp (0g𝑅)))) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))) = (0g𝑃))
183175, 182eqtrd 2644 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ (𝑥 supp (0g𝑅)))) → ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))) = (0g𝑃))
184183, 49suppss2 7216 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑃)) → ((𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) supp (0g𝑃)) ⊆ (𝑥 supp (0g𝑅)))
185 suppssfifsupp 8173 . . . . . . 7 ((((𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) ∈ V ∧ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) ∧ (0g𝑃) ∈ V) ∧ ((𝑥 supp (0g𝑅)) ∈ Fin ∧ ((𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) supp (0g𝑃)) ⊆ (𝑥 supp (0g𝑅)))) → (𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) finSupp (0g𝑃))
186162, 166, 184, 185syl12anc 1316 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑃)) → (𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) finSupp (0g𝑃))
18741, 46, 49, 59, 157, 186gsumsubgcl 18143 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑃)) → (𝑃 Σg (𝑘 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))))) ∈ (𝐴‘ran 𝑉))
18840, 187eqeltrd 2688 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑃)) → 𝑥 ∈ (𝐴‘ran 𝑉))
189188ex 449 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝑃) → 𝑥 ∈ (𝐴‘ran 𝑉)))
190189ssrdv 3574 . 2 (𝜑 → (Base‘𝑃) ⊆ (𝐴‘ran 𝑉))
19132, 190eqssd 3585 1 (𝜑 → (𝐴‘ran 𝑉) = (Base‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  {crab 2900  Vcvv 3173  cdif 3537  wss 3540  ifcif 4036   class class class wbr 4583  cmpt 4643  ccnv 5037  ran crn 5039  cima 5041  Fun wfun 5798   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549   supp csupp 7182  𝑚 cmap 7744  Fincfn 7841   finSupp cfsupp 8158  0cc0 9815  cn 10897  0cn0 11169  Basecbs 15695  .rcmulr 15769  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923   Σg cgsu 15924  SubMndcsubmnd 17157  .gcmg 17363  SubGrpcsubg 17411  CMndccmn 18016  Abelcabl 18017  mulGrpcmgp 18312  1rcur 18324  Ringcrg 18370  CRingccrg 18371  SubRingcsubrg 18599  LModclmod 18686  LSubSpclss 18753  AssAlgcasa 19130  AlgSpancasp 19131   mPwSer cmps 19172   mVar cmvr 19173   mPoly cmpl 19174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-tset 15787  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-srg 18329  df-ring 18372  df-cring 18373  df-subrg 18601  df-lmod 18688  df-lss 18754  df-assa 19133  df-asp 19134  df-psr 19177  df-mvr 19178  df-mpl 19179
This theorem is referenced by:  mplind  19323  evlseu  19337
  Copyright terms: Public domain W3C validator