Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archiabllem1b Structured version   Visualization version   GIF version

Theorem archiabllem1b 29077
Description: Lemma for archiabl 29083. (Contributed by Thierry Arnoux, 13-Apr-2018.)
Hypotheses
Ref Expression
archiabllem.b 𝐵 = (Base‘𝑊)
archiabllem.0 0 = (0g𝑊)
archiabllem.e = (le‘𝑊)
archiabllem.t < = (lt‘𝑊)
archiabllem.m · = (.g𝑊)
archiabllem.g (𝜑𝑊 ∈ oGrp)
archiabllem.a (𝜑𝑊 ∈ Archi)
archiabllem1.u (𝜑𝑈𝐵)
archiabllem1.p (𝜑0 < 𝑈)
archiabllem1.s ((𝜑𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
Assertion
Ref Expression
archiabllem1b ((𝜑𝑦𝐵) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
Distinct variable groups:   𝑥,𝑛,𝑦,𝐵   𝑈,𝑛,𝑥   𝑛,𝑊,𝑥,𝑦   𝜑,𝑛,𝑥,𝑦   · ,𝑛,𝑥   0 ,𝑛,𝑥   < ,𝑛,𝑥   𝑥,
Allowed substitution hints:   < (𝑦)   · (𝑦)   𝑈(𝑦)   (𝑦,𝑛)   0 (𝑦)

Proof of Theorem archiabllem1b
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 0zd 11266 . . 3 (((𝜑𝑦𝐵) ∧ 𝑦 = 0 ) → 0 ∈ ℤ)
2 simpr 476 . . . 4 (((𝜑𝑦𝐵) ∧ 𝑦 = 0 ) → 𝑦 = 0 )
3 archiabllem1.u . . . . . 6 (𝜑𝑈𝐵)
4 archiabllem.b . . . . . . 7 𝐵 = (Base‘𝑊)
5 archiabllem.0 . . . . . . 7 0 = (0g𝑊)
6 archiabllem.m . . . . . . 7 · = (.g𝑊)
74, 5, 6mulg0 17369 . . . . . 6 (𝑈𝐵 → (0 · 𝑈) = 0 )
83, 7syl 17 . . . . 5 (𝜑 → (0 · 𝑈) = 0 )
98ad2antrr 758 . . . 4 (((𝜑𝑦𝐵) ∧ 𝑦 = 0 ) → (0 · 𝑈) = 0 )
102, 9eqtr4d 2647 . . 3 (((𝜑𝑦𝐵) ∧ 𝑦 = 0 ) → 𝑦 = (0 · 𝑈))
11 oveq1 6556 . . . . 5 (𝑛 = 0 → (𝑛 · 𝑈) = (0 · 𝑈))
1211eqeq2d 2620 . . . 4 (𝑛 = 0 → (𝑦 = (𝑛 · 𝑈) ↔ 𝑦 = (0 · 𝑈)))
1312rspcev 3282 . . 3 ((0 ∈ ℤ ∧ 𝑦 = (0 · 𝑈)) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
141, 10, 13syl2anc 691 . 2 (((𝜑𝑦𝐵) ∧ 𝑦 = 0 ) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
15 simplr 788 . . . . . . 7 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → 𝑚 ∈ ℕ)
1615nnzd 11357 . . . . . 6 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → 𝑚 ∈ ℤ)
1716znegcld 11360 . . . . 5 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → -𝑚 ∈ ℤ)
1833ad2ant1 1075 . . . . . . . 8 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝑈𝐵)
1918ad2antrr 758 . . . . . . 7 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → 𝑈𝐵)
20 eqid 2610 . . . . . . . 8 (invg𝑊) = (invg𝑊)
214, 6, 20mulgnegnn 17374 . . . . . . 7 ((𝑚 ∈ ℕ ∧ 𝑈𝐵) → (-𝑚 · 𝑈) = ((invg𝑊)‘(𝑚 · 𝑈)))
2215, 19, 21syl2anc 691 . . . . . 6 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → (-𝑚 · 𝑈) = ((invg𝑊)‘(𝑚 · 𝑈)))
23 simpr 476 . . . . . . 7 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → ((invg𝑊)‘𝑦) = (𝑚 · 𝑈))
2423fveq2d 6107 . . . . . 6 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → ((invg𝑊)‘((invg𝑊)‘𝑦)) = ((invg𝑊)‘(𝑚 · 𝑈)))
25 archiabllem.g . . . . . . . . . 10 (𝜑𝑊 ∈ oGrp)
26253ad2ant1 1075 . . . . . . . . 9 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝑊 ∈ oGrp)
27 ogrpgrp 29034 . . . . . . . . 9 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
2826, 27syl 17 . . . . . . . 8 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝑊 ∈ Grp)
29 simp2 1055 . . . . . . . 8 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝑦𝐵)
304, 20grpinvinv 17305 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝑦𝐵) → ((invg𝑊)‘((invg𝑊)‘𝑦)) = 𝑦)
3128, 29, 30syl2anc 691 . . . . . . 7 ((𝜑𝑦𝐵𝑦 < 0 ) → ((invg𝑊)‘((invg𝑊)‘𝑦)) = 𝑦)
3231ad2antrr 758 . . . . . 6 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → ((invg𝑊)‘((invg𝑊)‘𝑦)) = 𝑦)
3322, 24, 323eqtr2rd 2651 . . . . 5 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → 𝑦 = (-𝑚 · 𝑈))
34 oveq1 6556 . . . . . . 7 (𝑛 = -𝑚 → (𝑛 · 𝑈) = (-𝑚 · 𝑈))
3534eqeq2d 2620 . . . . . 6 (𝑛 = -𝑚 → (𝑦 = (𝑛 · 𝑈) ↔ 𝑦 = (-𝑚 · 𝑈)))
3635rspcev 3282 . . . . 5 ((-𝑚 ∈ ℤ ∧ 𝑦 = (-𝑚 · 𝑈)) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
3717, 33, 36syl2anc 691 . . . 4 ((((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑚 ∈ ℕ) ∧ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈)) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
38 archiabllem.e . . . . 5 = (le‘𝑊)
39 archiabllem.t . . . . 5 < = (lt‘𝑊)
40 archiabllem.a . . . . . 6 (𝜑𝑊 ∈ Archi)
41403ad2ant1 1075 . . . . 5 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝑊 ∈ Archi)
42 archiabllem1.p . . . . . 6 (𝜑0 < 𝑈)
43423ad2ant1 1075 . . . . 5 ((𝜑𝑦𝐵𝑦 < 0 ) → 0 < 𝑈)
44 simp1 1054 . . . . . 6 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝜑)
45 archiabllem1.s . . . . . 6 ((𝜑𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
4644, 45syl3an1 1351 . . . . 5 (((𝜑𝑦𝐵𝑦 < 0 ) ∧ 𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
474, 20grpinvcl 17290 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑦𝐵) → ((invg𝑊)‘𝑦) ∈ 𝐵)
4828, 29, 47syl2anc 691 . . . . 5 ((𝜑𝑦𝐵𝑦 < 0 ) → ((invg𝑊)‘𝑦) ∈ 𝐵)
494, 5grpidcl 17273 . . . . . . . 8 (𝑊 ∈ Grp → 0𝐵)
5028, 49syl 17 . . . . . . 7 ((𝜑𝑦𝐵𝑦 < 0 ) → 0𝐵)
51 simp3 1056 . . . . . . 7 ((𝜑𝑦𝐵𝑦 < 0 ) → 𝑦 < 0 )
52 eqid 2610 . . . . . . . 8 (+g𝑊) = (+g𝑊)
534, 39, 52ogrpaddlt 29049 . . . . . . 7 ((𝑊 ∈ oGrp ∧ (𝑦𝐵0𝐵 ∧ ((invg𝑊)‘𝑦) ∈ 𝐵) ∧ 𝑦 < 0 ) → (𝑦(+g𝑊)((invg𝑊)‘𝑦)) < ( 0 (+g𝑊)((invg𝑊)‘𝑦)))
5426, 29, 50, 48, 51, 53syl131anc 1331 . . . . . 6 ((𝜑𝑦𝐵𝑦 < 0 ) → (𝑦(+g𝑊)((invg𝑊)‘𝑦)) < ( 0 (+g𝑊)((invg𝑊)‘𝑦)))
554, 52, 5, 20grprinv 17292 . . . . . . 7 ((𝑊 ∈ Grp ∧ 𝑦𝐵) → (𝑦(+g𝑊)((invg𝑊)‘𝑦)) = 0 )
5628, 29, 55syl2anc 691 . . . . . 6 ((𝜑𝑦𝐵𝑦 < 0 ) → (𝑦(+g𝑊)((invg𝑊)‘𝑦)) = 0 )
574, 52, 5grplid 17275 . . . . . . 7 ((𝑊 ∈ Grp ∧ ((invg𝑊)‘𝑦) ∈ 𝐵) → ( 0 (+g𝑊)((invg𝑊)‘𝑦)) = ((invg𝑊)‘𝑦))
5828, 48, 57syl2anc 691 . . . . . 6 ((𝜑𝑦𝐵𝑦 < 0 ) → ( 0 (+g𝑊)((invg𝑊)‘𝑦)) = ((invg𝑊)‘𝑦))
5954, 56, 583brtr3d 4614 . . . . 5 ((𝜑𝑦𝐵𝑦 < 0 ) → 0 < ((invg𝑊)‘𝑦))
604, 5, 38, 39, 6, 26, 41, 18, 43, 46, 48, 59archiabllem1a 29076 . . . 4 ((𝜑𝑦𝐵𝑦 < 0 ) → ∃𝑚 ∈ ℕ ((invg𝑊)‘𝑦) = (𝑚 · 𝑈))
6137, 60r19.29a 3060 . . 3 ((𝜑𝑦𝐵𝑦 < 0 ) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
62613expa 1257 . 2 (((𝜑𝑦𝐵) ∧ 𝑦 < 0 ) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
63 nnssz 11274 . . 3 ℕ ⊆ ℤ
64253ad2ant1 1075 . . . . 5 ((𝜑𝑦𝐵0 < 𝑦) → 𝑊 ∈ oGrp)
65403ad2ant1 1075 . . . . 5 ((𝜑𝑦𝐵0 < 𝑦) → 𝑊 ∈ Archi)
6633ad2ant1 1075 . . . . 5 ((𝜑𝑦𝐵0 < 𝑦) → 𝑈𝐵)
67423ad2ant1 1075 . . . . 5 ((𝜑𝑦𝐵0 < 𝑦) → 0 < 𝑈)
68 simp1 1054 . . . . . 6 ((𝜑𝑦𝐵0 < 𝑦) → 𝜑)
6968, 45syl3an1 1351 . . . . 5 (((𝜑𝑦𝐵0 < 𝑦) ∧ 𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
70 simp2 1055 . . . . 5 ((𝜑𝑦𝐵0 < 𝑦) → 𝑦𝐵)
71 simp3 1056 . . . . 5 ((𝜑𝑦𝐵0 < 𝑦) → 0 < 𝑦)
724, 5, 38, 39, 6, 64, 65, 66, 67, 69, 70, 71archiabllem1a 29076 . . . 4 ((𝜑𝑦𝐵0 < 𝑦) → ∃𝑛 ∈ ℕ 𝑦 = (𝑛 · 𝑈))
73723expa 1257 . . 3 (((𝜑𝑦𝐵) ∧ 0 < 𝑦) → ∃𝑛 ∈ ℕ 𝑦 = (𝑛 · 𝑈))
74 ssrexv 3630 . . 3 (ℕ ⊆ ℤ → (∃𝑛 ∈ ℕ 𝑦 = (𝑛 · 𝑈) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈)))
7563, 73, 74mpsyl 66 . 2 (((𝜑𝑦𝐵) ∧ 0 < 𝑦) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
76 isogrp 29033 . . . . . 6 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
7776simprbi 479 . . . . 5 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
78 omndtos 29036 . . . . 5 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
7925, 77, 783syl 18 . . . 4 (𝜑𝑊 ∈ Toset)
8079adantr 480 . . 3 ((𝜑𝑦𝐵) → 𝑊 ∈ Toset)
81 simpr 476 . . 3 ((𝜑𝑦𝐵) → 𝑦𝐵)
8225, 27, 493syl 18 . . . 4 (𝜑0𝐵)
8382adantr 480 . . 3 ((𝜑𝑦𝐵) → 0𝐵)
844, 39tlt3 28996 . . 3 ((𝑊 ∈ Toset ∧ 𝑦𝐵0𝐵) → (𝑦 = 0𝑦 < 00 < 𝑦))
8580, 81, 83, 84syl3anc 1318 . 2 ((𝜑𝑦𝐵) → (𝑦 = 0𝑦 < 00 < 𝑦))
8614, 62, 75, 85mpjao3dan 1387 1 ((𝜑𝑦𝐵) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3o 1030  w3a 1031   = wceq 1475  wcel 1977  wrex 2897  wss 3540   class class class wbr 4583  cfv 5804  (class class class)co 6549  0cc0 9815  -cneg 10146  cn 10897  cz 11254  Basecbs 15695  +gcplusg 15768  lecple 15775  0gc0g 15923  ltcplt 16764  Tosetctos 16856  Grpcgrp 17245  invgcminusg 17246  .gcmg 17363  oMndcomnd 29028  oGrpcogrp 29029  Archicarchi 29062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-seq 12664  df-0g 15925  df-preset 16751  df-poset 16769  df-plt 16781  df-toset 16857  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-omnd 29030  df-ogrp 29031  df-inftm 29063  df-archi 29064
This theorem is referenced by:  archiabllem1  29078
  Copyright terms: Public domain W3C validator