MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldexp Structured version   Visualization version   GIF version

Theorem cnfldexp 19598
Description: The exponentiation operator in the field of complex numbers (for nonnegative exponents). (Contributed by Mario Carneiro, 15-Jun-2015.)
Assertion
Ref Expression
cnfldexp ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0) → (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝐵))

Proof of Theorem cnfldexp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6556 . . . . 5 (𝑥 = 0 → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (0(.g‘(mulGrp‘ℂfld))𝐴))
2 oveq2 6557 . . . . 5 (𝑥 = 0 → (𝐴𝑥) = (𝐴↑0))
31, 2eqeq12d 2625 . . . 4 (𝑥 = 0 → ((𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥) ↔ (0(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑0)))
43imbi2d 329 . . 3 (𝑥 = 0 → ((𝐴 ∈ ℂ → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥)) ↔ (𝐴 ∈ ℂ → (0(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑0))))
5 oveq1 6556 . . . . 5 (𝑥 = 𝑦 → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝑦(.g‘(mulGrp‘ℂfld))𝐴))
6 oveq2 6557 . . . . 5 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
75, 6eqeq12d 2625 . . . 4 (𝑥 = 𝑦 → ((𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥) ↔ (𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑦)))
87imbi2d 329 . . 3 (𝑥 = 𝑦 → ((𝐴 ∈ ℂ → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥)) ↔ (𝐴 ∈ ℂ → (𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑦))))
9 oveq1 6556 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴))
10 oveq2 6557 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐴𝑥) = (𝐴↑(𝑦 + 1)))
119, 10eqeq12d 2625 . . . 4 (𝑥 = (𝑦 + 1) → ((𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥) ↔ ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1))))
1211imbi2d 329 . . 3 (𝑥 = (𝑦 + 1) → ((𝐴 ∈ ℂ → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥)) ↔ (𝐴 ∈ ℂ → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1)))))
13 oveq1 6556 . . . . 5 (𝑥 = 𝐵 → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐵(.g‘(mulGrp‘ℂfld))𝐴))
14 oveq2 6557 . . . . 5 (𝑥 = 𝐵 → (𝐴𝑥) = (𝐴𝐵))
1513, 14eqeq12d 2625 . . . 4 (𝑥 = 𝐵 → ((𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥) ↔ (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝐵)))
1615imbi2d 329 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ℂ → (𝑥(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑥)) ↔ (𝐴 ∈ ℂ → (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝐵))))
17 eqid 2610 . . . . . 6 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
18 cnfldbas 19571 . . . . . 6 ℂ = (Base‘ℂfld)
1917, 18mgpbas 18318 . . . . 5 ℂ = (Base‘(mulGrp‘ℂfld))
20 cnfld1 19590 . . . . . 6 1 = (1r‘ℂfld)
2117, 20ringidval 18326 . . . . 5 1 = (0g‘(mulGrp‘ℂfld))
22 eqid 2610 . . . . 5 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
2319, 21, 22mulg0 17369 . . . 4 (𝐴 ∈ ℂ → (0(.g‘(mulGrp‘ℂfld))𝐴) = 1)
24 exp0 12726 . . . 4 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
2523, 24eqtr4d 2647 . . 3 (𝐴 ∈ ℂ → (0(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑0))
26 oveq1 6556 . . . . . 6 ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑦) → ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) · 𝐴) = ((𝐴𝑦) · 𝐴))
27 cnring 19587 . . . . . . . . . 10 fld ∈ Ring
2817ringmgp 18376 . . . . . . . . . 10 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
2927, 28ax-mp 5 . . . . . . . . 9 (mulGrp‘ℂfld) ∈ Mnd
30 cnfldmul 19573 . . . . . . . . . . 11 · = (.r‘ℂfld)
3117, 30mgpplusg 18316 . . . . . . . . . 10 · = (+g‘(mulGrp‘ℂfld))
3219, 22, 31mulgnn0p1 17375 . . . . . . . . 9 (((mulGrp‘ℂfld) ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐴 ∈ ℂ) → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) · 𝐴))
3329, 32mp3an1 1403 . . . . . . . 8 ((𝑦 ∈ ℕ0𝐴 ∈ ℂ) → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) · 𝐴))
3433ancoms 468 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) · 𝐴))
35 expp1 12729 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → (𝐴↑(𝑦 + 1)) = ((𝐴𝑦) · 𝐴))
3634, 35eqeq12d 2625 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → (((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1)) ↔ ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) · 𝐴) = ((𝐴𝑦) · 𝐴)))
3726, 36syl5ibr 235 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑦) → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1))))
3837expcom 450 . . . 4 (𝑦 ∈ ℕ0 → (𝐴 ∈ ℂ → ((𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑦) → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1)))))
3938a2d 29 . . 3 (𝑦 ∈ ℕ0 → ((𝐴 ∈ ℂ → (𝑦(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝑦)) → (𝐴 ∈ ℂ → ((𝑦 + 1)(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑(𝑦 + 1)))))
404, 8, 12, 16, 25, 39nn0ind 11348 . 2 (𝐵 ∈ ℕ0 → (𝐴 ∈ ℂ → (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝐵)))
4140impcom 445 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0) → (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  0cn0 11169  cexp 12722  Mndcmnd 17117  .gcmg 17363  mulGrpcmgp 18312  Ringcrg 18370  fldccnfld 19567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-seq 12664  df-exp 12723  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-mulg 17364  df-cmn 18018  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-cnfld 19568
This theorem is referenced by:  cmodscexp  22729  plypf1  23772  dchrfi  24780  dchrabs  24785  lgsqrlem1  24871  lgseisenlem4  24903  dchrisum0flblem1  24997  proot1ex  36798
  Copyright terms: Public domain W3C validator