MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexid Structured version   Visualization version   GIF version

Theorem gexid 17819
Description: Any element to the power of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexcl.1 𝑋 = (Base‘𝐺)
gexcl.2 𝐸 = (gEx‘𝐺)
gexid.3 · = (.g𝐺)
gexid.4 0 = (0g𝐺)
Assertion
Ref Expression
gexid (𝐴𝑋 → (𝐸 · 𝐴) = 0 )

Proof of Theorem gexid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6556 . . . 4 (𝐸 = 0 → (𝐸 · 𝐴) = (0 · 𝐴))
2 gexcl.1 . . . . 5 𝑋 = (Base‘𝐺)
3 gexid.4 . . . . 5 0 = (0g𝐺)
4 gexid.3 . . . . 5 · = (.g𝐺)
52, 3, 4mulg0 17369 . . . 4 (𝐴𝑋 → (0 · 𝐴) = 0 )
61, 5sylan9eqr 2666 . . 3 ((𝐴𝑋𝐸 = 0) → (𝐸 · 𝐴) = 0 )
76adantrr 749 . 2 ((𝐴𝑋 ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (𝐸 · 𝐴) = 0 )
8 oveq1 6556 . . . . . . 7 (𝑦 = 𝐸 → (𝑦 · 𝑥) = (𝐸 · 𝑥))
98eqeq1d 2612 . . . . . 6 (𝑦 = 𝐸 → ((𝑦 · 𝑥) = 0 ↔ (𝐸 · 𝑥) = 0 ))
109ralbidv 2969 . . . . 5 (𝑦 = 𝐸 → (∀𝑥𝑋 (𝑦 · 𝑥) = 0 ↔ ∀𝑥𝑋 (𝐸 · 𝑥) = 0 ))
1110elrab 3331 . . . 4 (𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ↔ (𝐸 ∈ ℕ ∧ ∀𝑥𝑋 (𝐸 · 𝑥) = 0 ))
1211simprbi 479 . . 3 (𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } → ∀𝑥𝑋 (𝐸 · 𝑥) = 0 )
13 oveq2 6557 . . . . 5 (𝑥 = 𝐴 → (𝐸 · 𝑥) = (𝐸 · 𝐴))
1413eqeq1d 2612 . . . 4 (𝑥 = 𝐴 → ((𝐸 · 𝑥) = 0 ↔ (𝐸 · 𝐴) = 0 ))
1514rspcva 3280 . . 3 ((𝐴𝑋 ∧ ∀𝑥𝑋 (𝐸 · 𝑥) = 0 ) → (𝐸 · 𝐴) = 0 )
1612, 15sylan2 490 . 2 ((𝐴𝑋𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → (𝐸 · 𝐴) = 0 )
17 elfvex 6131 . . . 4 (𝐴 ∈ (Base‘𝐺) → 𝐺 ∈ V)
1817, 2eleq2s 2706 . . 3 (𝐴𝑋𝐺 ∈ V)
19 gexcl.2 . . . 4 𝐸 = (gEx‘𝐺)
20 eqid 2610 . . . 4 {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }
212, 4, 3, 19, 20gexlem1 17817 . . 3 (𝐺 ∈ V → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }))
2218, 21syl 17 . 2 (𝐴𝑋 → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }))
237, 16, 22mpjaodan 823 1 (𝐴𝑋 → (𝐸 · 𝐴) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1475  wcel 1977  wral 2896  {crab 2900  Vcvv 3173  c0 3874  cfv 5804  (class class class)co 6549  0cc0 9815  cn 10897  Basecbs 15695  0gc0g 15923  .gcmg 17363  gExcgex 17768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-seq 12664  df-mulg 17364  df-gex 17772
This theorem is referenced by:  gexdvdsi  17821  gexod  17824  gex1  17829  pgpfac1lem3a  18298
  Copyright terms: Public domain W3C validator