Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archirngz Structured version   Visualization version   GIF version

Theorem archirngz 29074
 Description: Property of Archimedean left and right ordered groups. (Contributed by Thierry Arnoux, 6-May-2018.)
Hypotheses
Ref Expression
archirng.b 𝐵 = (Base‘𝑊)
archirng.0 0 = (0g𝑊)
archirng.i < = (lt‘𝑊)
archirng.l = (le‘𝑊)
archirng.x · = (.g𝑊)
archirng.1 (𝜑𝑊 ∈ oGrp)
archirng.2 (𝜑𝑊 ∈ Archi)
archirng.3 (𝜑𝑋𝐵)
archirng.4 (𝜑𝑌𝐵)
archirng.5 (𝜑0 < 𝑋)
archirngz.1 (𝜑 → (oppg𝑊) ∈ oGrp)
Assertion
Ref Expression
archirngz (𝜑 → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
Distinct variable groups:   𝑛,𝑋   𝑛,𝑌   𝜑,𝑛   0 ,𝑛   ,𝑛   < ,𝑛   · ,𝑛
Allowed substitution hints:   𝐵(𝑛)   𝑊(𝑛)

Proof of Theorem archirngz
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 neg1z 11290 . . 3 -1 ∈ ℤ
2 archirng.1 . . . . . . . . . 10 (𝜑𝑊 ∈ oGrp)
3 ogrpgrp 29034 . . . . . . . . . 10 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
42, 3syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ Grp)
5 1zzd 11285 . . . . . . . . 9 (𝜑 → 1 ∈ ℤ)
6 archirng.3 . . . . . . . . 9 (𝜑𝑋𝐵)
7 archirng.b . . . . . . . . . 10 𝐵 = (Base‘𝑊)
8 archirng.x . . . . . . . . . 10 · = (.g𝑊)
9 eqid 2610 . . . . . . . . . 10 (invg𝑊) = (invg𝑊)
107, 8, 9mulgneg 17383 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ 1 ∈ ℤ ∧ 𝑋𝐵) → (-1 · 𝑋) = ((invg𝑊)‘(1 · 𝑋)))
114, 5, 6, 10syl3anc 1318 . . . . . . . 8 (𝜑 → (-1 · 𝑋) = ((invg𝑊)‘(1 · 𝑋)))
127, 8mulg1 17371 . . . . . . . . . 10 (𝑋𝐵 → (1 · 𝑋) = 𝑋)
136, 12syl 17 . . . . . . . . 9 (𝜑 → (1 · 𝑋) = 𝑋)
1413fveq2d 6107 . . . . . . . 8 (𝜑 → ((invg𝑊)‘(1 · 𝑋)) = ((invg𝑊)‘𝑋))
1511, 14eqtrd 2644 . . . . . . 7 (𝜑 → (-1 · 𝑋) = ((invg𝑊)‘𝑋))
16 archirng.5 . . . . . . . 8 (𝜑0 < 𝑋)
17 archirng.i . . . . . . . . . 10 < = (lt‘𝑊)
18 archirng.0 . . . . . . . . . 10 0 = (0g𝑊)
197, 17, 9, 18ogrpinv0lt 29054 . . . . . . . . 9 ((𝑊 ∈ oGrp ∧ 𝑋𝐵) → ( 0 < 𝑋 ↔ ((invg𝑊)‘𝑋) < 0 ))
2019biimpa 500 . . . . . . . 8 (((𝑊 ∈ oGrp ∧ 𝑋𝐵) ∧ 0 < 𝑋) → ((invg𝑊)‘𝑋) < 0 )
212, 6, 16, 20syl21anc 1317 . . . . . . 7 (𝜑 → ((invg𝑊)‘𝑋) < 0 )
2215, 21eqbrtrd 4605 . . . . . 6 (𝜑 → (-1 · 𝑋) < 0 )
2322adantr 480 . . . . 5 ((𝜑𝑌 = 0 ) → (-1 · 𝑋) < 0 )
24 simpr 476 . . . . 5 ((𝜑𝑌 = 0 ) → 𝑌 = 0 )
2523, 24breqtrrd 4611 . . . 4 ((𝜑𝑌 = 0 ) → (-1 · 𝑋) < 𝑌)
26 isogrp 29033 . . . . . . . . . 10 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
2726simprbi 479 . . . . . . . . 9 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
28 omndtos 29036 . . . . . . . . 9 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
292, 27, 283syl 18 . . . . . . . 8 (𝜑𝑊 ∈ Toset)
30 tospos 28989 . . . . . . . 8 (𝑊 ∈ Toset → 𝑊 ∈ Poset)
3129, 30syl 17 . . . . . . 7 (𝜑𝑊 ∈ Poset)
327, 18grpidcl 17273 . . . . . . . 8 (𝑊 ∈ Grp → 0𝐵)
332, 3, 323syl 18 . . . . . . 7 (𝜑0𝐵)
34 archirng.l . . . . . . . 8 = (le‘𝑊)
357, 34posref 16774 . . . . . . 7 ((𝑊 ∈ Poset ∧ 0𝐵) → 0 0 )
3631, 33, 35syl2anc 691 . . . . . 6 (𝜑0 0 )
3736adantr 480 . . . . 5 ((𝜑𝑌 = 0 ) → 0 0 )
38 1m1e0 10966 . . . . . . . . . 10 (1 − 1) = 0
3938negeqi 10153 . . . . . . . . 9 -(1 − 1) = -0
40 ax-1cn 9873 . . . . . . . . . 10 1 ∈ ℂ
4140, 40negsubdii 10245 . . . . . . . . 9 -(1 − 1) = (-1 + 1)
42 neg0 10206 . . . . . . . . 9 -0 = 0
4339, 41, 423eqtr3i 2640 . . . . . . . 8 (-1 + 1) = 0
4443oveq1i 6559 . . . . . . 7 ((-1 + 1) · 𝑋) = (0 · 𝑋)
457, 18, 8mulg0 17369 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = 0 )
466, 45syl 17 . . . . . . 7 (𝜑 → (0 · 𝑋) = 0 )
4744, 46syl5eq 2656 . . . . . 6 (𝜑 → ((-1 + 1) · 𝑋) = 0 )
4847adantr 480 . . . . 5 ((𝜑𝑌 = 0 ) → ((-1 + 1) · 𝑋) = 0 )
4937, 24, 483brtr4d 4615 . . . 4 ((𝜑𝑌 = 0 ) → 𝑌 ((-1 + 1) · 𝑋))
5025, 49jca 553 . . 3 ((𝜑𝑌 = 0 ) → ((-1 · 𝑋) < 𝑌𝑌 ((-1 + 1) · 𝑋)))
51 oveq1 6556 . . . . . 6 (𝑛 = -1 → (𝑛 · 𝑋) = (-1 · 𝑋))
5251breq1d 4593 . . . . 5 (𝑛 = -1 → ((𝑛 · 𝑋) < 𝑌 ↔ (-1 · 𝑋) < 𝑌))
53 oveq1 6556 . . . . . . 7 (𝑛 = -1 → (𝑛 + 1) = (-1 + 1))
5453oveq1d 6564 . . . . . 6 (𝑛 = -1 → ((𝑛 + 1) · 𝑋) = ((-1 + 1) · 𝑋))
5554breq2d 4595 . . . . 5 (𝑛 = -1 → (𝑌 ((𝑛 + 1) · 𝑋) ↔ 𝑌 ((-1 + 1) · 𝑋)))
5652, 55anbi12d 743 . . . 4 (𝑛 = -1 → (((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)) ↔ ((-1 · 𝑋) < 𝑌𝑌 ((-1 + 1) · 𝑋))))
5756rspcev 3282 . . 3 ((-1 ∈ ℤ ∧ ((-1 · 𝑋) < 𝑌𝑌 ((-1 + 1) · 𝑋))) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
581, 50, 57sylancr 694 . 2 ((𝜑𝑌 = 0 ) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
59 simpr 476 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
6059nn0zd 11356 . . . . . . . 8 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℤ)
6160ad2antrr 758 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → 𝑚 ∈ ℤ)
6261znegcld 11360 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → -𝑚 ∈ ℤ)
63 2z 11286 . . . . . . 7 2 ∈ ℤ
6463a1i 11 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → 2 ∈ ℤ)
6562, 64zsubcld 11363 . . . . 5 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → (-𝑚 − 2) ∈ ℤ)
66 nn0cn 11179 . . . . . . . . . . 11 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
6766adantl 481 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ)
68 2cnd 10970 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 2 ∈ ℂ)
6967, 68negdi2d 10285 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → -(𝑚 + 2) = (-𝑚 − 2))
7069oveq1d 6564 . . . . . . . 8 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-(𝑚 + 2) · 𝑋) = ((-𝑚 − 2) · 𝑋))
712ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑊 ∈ oGrp)
72 archirngz.1 . . . . . . . . . . . 12 (𝜑 → (oppg𝑊) ∈ oGrp)
7372ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (oppg𝑊) ∈ oGrp)
7471, 73jca 553 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp))
754ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑊 ∈ Grp)
7660peano2zd 11361 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑚 + 1) ∈ ℤ)
776ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑋𝐵)
787, 8mulgcl 17382 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ (𝑚 + 1) ∈ ℤ ∧ 𝑋𝐵) → ((𝑚 + 1) · 𝑋) ∈ 𝐵)
7975, 76, 77, 78syl3anc 1318 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 1) · 𝑋) ∈ 𝐵)
8063a1i 11 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 2 ∈ ℤ)
8160, 80zaddcld 11362 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑚 + 2) ∈ ℤ)
827, 8mulgcl 17382 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ (𝑚 + 2) ∈ ℤ ∧ 𝑋𝐵) → ((𝑚 + 2) · 𝑋) ∈ 𝐵)
8375, 81, 77, 82syl3anc 1318 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 2) · 𝑋) ∈ 𝐵)
8475, 32syl 17 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 0𝐵)
8516ad2antrr 758 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 0 < 𝑋)
86 eqid 2610 . . . . . . . . . . . . 13 (+g𝑊) = (+g𝑊)
877, 17, 86ogrpaddlt 29049 . . . . . . . . . . . 12 ((𝑊 ∈ oGrp ∧ ( 0𝐵𝑋𝐵 ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵) ∧ 0 < 𝑋) → ( 0 (+g𝑊)((𝑚 + 1) · 𝑋)) < (𝑋(+g𝑊)((𝑚 + 1) · 𝑋)))
8871, 84, 77, 79, 85, 87syl131anc 1331 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ( 0 (+g𝑊)((𝑚 + 1) · 𝑋)) < (𝑋(+g𝑊)((𝑚 + 1) · 𝑋)))
897, 86, 18grplid 17275 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵) → ( 0 (+g𝑊)((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) · 𝑋))
9075, 79, 89syl2anc 691 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ( 0 (+g𝑊)((𝑚 + 1) · 𝑋)) = ((𝑚 + 1) · 𝑋))
91 1cnd 9935 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ0 → 1 ∈ ℂ)
9266, 91, 91addassd 9941 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ0 → ((𝑚 + 1) + 1) = (𝑚 + (1 + 1)))
93 1p1e2 11011 . . . . . . . . . . . . . . . . 17 (1 + 1) = 2
9493oveq2i 6560 . . . . . . . . . . . . . . . 16 (𝑚 + (1 + 1)) = (𝑚 + 2)
9592, 94syl6eq 2660 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0 → ((𝑚 + 1) + 1) = (𝑚 + 2))
9666, 91addcld 9938 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℂ)
9796, 91addcomd 10117 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0 → ((𝑚 + 1) + 1) = (1 + (𝑚 + 1)))
9895, 97eqtr3d 2646 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 → (𝑚 + 2) = (1 + (𝑚 + 1)))
9998oveq1d 6564 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0 → ((𝑚 + 2) · 𝑋) = ((1 + (𝑚 + 1)) · 𝑋))
10099adantl 481 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 2) · 𝑋) = ((1 + (𝑚 + 1)) · 𝑋))
101 1zzd 11285 . . . . . . . . . . . . 13 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 1 ∈ ℤ)
1027, 8, 86mulgdir 17396 . . . . . . . . . . . . 13 ((𝑊 ∈ Grp ∧ (1 ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ ∧ 𝑋𝐵)) → ((1 + (𝑚 + 1)) · 𝑋) = ((1 · 𝑋)(+g𝑊)((𝑚 + 1) · 𝑋)))
10375, 101, 76, 77, 102syl13anc 1320 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((1 + (𝑚 + 1)) · 𝑋) = ((1 · 𝑋)(+g𝑊)((𝑚 + 1) · 𝑋)))
10477, 12syl 17 . . . . . . . . . . . . 13 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (1 · 𝑋) = 𝑋)
105104oveq1d 6564 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((1 · 𝑋)(+g𝑊)((𝑚 + 1) · 𝑋)) = (𝑋(+g𝑊)((𝑚 + 1) · 𝑋)))
106100, 103, 1053eqtrrd 2649 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑋(+g𝑊)((𝑚 + 1) · 𝑋)) = ((𝑚 + 2) · 𝑋))
10788, 90, 1063brtr3d 4614 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 1) · 𝑋) < ((𝑚 + 2) · 𝑋))
1087, 17, 9ogrpinvlt 29055 . . . . . . . . . . 11 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp) ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵 ∧ ((𝑚 + 2) · 𝑋) ∈ 𝐵) → (((𝑚 + 1) · 𝑋) < ((𝑚 + 2) · 𝑋) ↔ ((invg𝑊)‘((𝑚 + 2) · 𝑋)) < ((invg𝑊)‘((𝑚 + 1) · 𝑋))))
109108biimpa 500 . . . . . . . . . 10 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp) ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵 ∧ ((𝑚 + 2) · 𝑋) ∈ 𝐵) ∧ ((𝑚 + 1) · 𝑋) < ((𝑚 + 2) · 𝑋)) → ((invg𝑊)‘((𝑚 + 2) · 𝑋)) < ((invg𝑊)‘((𝑚 + 1) · 𝑋)))
11074, 79, 83, 107, 109syl31anc 1321 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((invg𝑊)‘((𝑚 + 2) · 𝑋)) < ((invg𝑊)‘((𝑚 + 1) · 𝑋)))
1117, 8, 9mulgneg 17383 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ (𝑚 + 2) ∈ ℤ ∧ 𝑋𝐵) → (-(𝑚 + 2) · 𝑋) = ((invg𝑊)‘((𝑚 + 2) · 𝑋)))
11275, 81, 77, 111syl3anc 1318 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-(𝑚 + 2) · 𝑋) = ((invg𝑊)‘((𝑚 + 2) · 𝑋)))
1137, 8, 9mulgneg 17383 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ (𝑚 + 1) ∈ ℤ ∧ 𝑋𝐵) → (-(𝑚 + 1) · 𝑋) = ((invg𝑊)‘((𝑚 + 1) · 𝑋)))
11475, 76, 77, 113syl3anc 1318 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-(𝑚 + 1) · 𝑋) = ((invg𝑊)‘((𝑚 + 1) · 𝑋)))
115110, 112, 1143brtr4d 4615 . . . . . . . 8 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-(𝑚 + 2) · 𝑋) < (-(𝑚 + 1) · 𝑋))
11670, 115eqbrtrrd 4607 . . . . . . 7 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((-𝑚 − 2) · 𝑋) < (-(𝑚 + 1) · 𝑋))
117116ad2antrr 758 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((-𝑚 − 2) · 𝑋) < (-(𝑚 + 1) · 𝑋))
118114ad2antrr 758 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → (-(𝑚 + 1) · 𝑋) = ((invg𝑊)‘((𝑚 + 1) · 𝑋)))
11931ad4antr 764 . . . . . . . . 9 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → 𝑊 ∈ Poset)
120 archirng.4 . . . . . . . . . . . 12 (𝜑𝑌𝐵)
1217, 9grpinvcl 17290 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ 𝑌𝐵) → ((invg𝑊)‘𝑌) ∈ 𝐵)
1224, 120, 121syl2anc 691 . . . . . . . . . . 11 (𝜑 → ((invg𝑊)‘𝑌) ∈ 𝐵)
123122ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((invg𝑊)‘𝑌) ∈ 𝐵)
124123ad2antrr 758 . . . . . . . . 9 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((invg𝑊)‘𝑌) ∈ 𝐵)
12579ad2antrr 758 . . . . . . . . 9 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((𝑚 + 1) · 𝑋) ∈ 𝐵)
126 simplrr 797 . . . . . . . . 9 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))
127 simpr 476 . . . . . . . . 9 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌))
1287, 34posasymb 16775 . . . . . . . . . 10 ((𝑊 ∈ Poset ∧ ((invg𝑊)‘𝑌) ∈ 𝐵 ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵) → ((((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) ↔ ((invg𝑊)‘𝑌) = ((𝑚 + 1) · 𝑋)))
129128biimpa 500 . . . . . . . . 9 (((𝑊 ∈ Poset ∧ ((invg𝑊)‘𝑌) ∈ 𝐵 ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵) ∧ (((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌))) → ((invg𝑊)‘𝑌) = ((𝑚 + 1) · 𝑋))
130119, 124, 125, 126, 127, 129syl32anc 1326 . . . . . . . 8 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((invg𝑊)‘𝑌) = ((𝑚 + 1) · 𝑋))
131130fveq2d 6107 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((invg𝑊)‘((invg𝑊)‘𝑌)) = ((invg𝑊)‘((𝑚 + 1) · 𝑋)))
1327, 9grpinvinv 17305 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ 𝑌𝐵) → ((invg𝑊)‘((invg𝑊)‘𝑌)) = 𝑌)
1334, 120, 132syl2anc 691 . . . . . . . 8 (𝜑 → ((invg𝑊)‘((invg𝑊)‘𝑌)) = 𝑌)
134133ad4antr 764 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((invg𝑊)‘((invg𝑊)‘𝑌)) = 𝑌)
135118, 131, 1343eqtr2rd 2651 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → 𝑌 = (-(𝑚 + 1) · 𝑋))
136117, 135breqtrrd 4611 . . . . 5 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ((-𝑚 − 2) · 𝑋) < 𝑌)
137 1cnd 9935 . . . . . . . . . . . . 13 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 1 ∈ ℂ)
13867, 68, 137addsubassd 10291 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 2) − 1) = (𝑚 + (2 − 1)))
139 2m1e1 11012 . . . . . . . . . . . . 13 (2 − 1) = 1
140139oveq2i 6560 . . . . . . . . . . . 12 (𝑚 + (2 − 1)) = (𝑚 + 1)
141138, 140syl6req 2661 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑚 + 1) = ((𝑚 + 2) − 1))
142141negeqd 10154 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → -(𝑚 + 1) = -((𝑚 + 2) − 1))
14367, 68addcld 9938 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑚 + 2) ∈ ℂ)
144143, 137negsubdid 10286 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → -((𝑚 + 2) − 1) = (-(𝑚 + 2) + 1))
14569oveq1d 6564 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-(𝑚 + 2) + 1) = ((-𝑚 − 2) + 1))
146142, 144, 1453eqtrrd 2649 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((-𝑚 − 2) + 1) = -(𝑚 + 1))
147146oveq1d 6564 . . . . . . . 8 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (((-𝑚 − 2) + 1) · 𝑋) = (-(𝑚 + 1) · 𝑋))
14829ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑊 ∈ Toset)
149148, 30syl 17 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → 𝑊 ∈ Poset)
15060znegcld 11360 . . . . . . . . . . . 12 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → -𝑚 ∈ ℤ)
151150, 80zsubcld 11363 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-𝑚 − 2) ∈ ℤ)
152151peano2zd 11361 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((-𝑚 − 2) + 1) ∈ ℤ)
1537, 8mulgcl 17382 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ ((-𝑚 − 2) + 1) ∈ ℤ ∧ 𝑋𝐵) → (((-𝑚 − 2) + 1) · 𝑋) ∈ 𝐵)
15475, 152, 77, 153syl3anc 1318 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (((-𝑚 − 2) + 1) · 𝑋) ∈ 𝐵)
1557, 34posref 16774 . . . . . . . . 9 ((𝑊 ∈ Poset ∧ (((-𝑚 − 2) + 1) · 𝑋) ∈ 𝐵) → (((-𝑚 − 2) + 1) · 𝑋) (((-𝑚 − 2) + 1) · 𝑋))
156149, 154, 155syl2anc 691 . . . . . . . 8 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (((-𝑚 − 2) + 1) · 𝑋) (((-𝑚 − 2) + 1) · 𝑋))
157147, 156eqbrtrrd 4607 . . . . . . 7 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-(𝑚 + 1) · 𝑋) (((-𝑚 − 2) + 1) · 𝑋))
158157ad2antrr 758 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → (-(𝑚 + 1) · 𝑋) (((-𝑚 − 2) + 1) · 𝑋))
159135, 158eqbrtrd 4605 . . . . 5 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → 𝑌 (((-𝑚 − 2) + 1) · 𝑋))
160 oveq1 6556 . . . . . . . 8 (𝑛 = (-𝑚 − 2) → (𝑛 · 𝑋) = ((-𝑚 − 2) · 𝑋))
161160breq1d 4593 . . . . . . 7 (𝑛 = (-𝑚 − 2) → ((𝑛 · 𝑋) < 𝑌 ↔ ((-𝑚 − 2) · 𝑋) < 𝑌))
162 oveq1 6556 . . . . . . . . 9 (𝑛 = (-𝑚 − 2) → (𝑛 + 1) = ((-𝑚 − 2) + 1))
163162oveq1d 6564 . . . . . . . 8 (𝑛 = (-𝑚 − 2) → ((𝑛 + 1) · 𝑋) = (((-𝑚 − 2) + 1) · 𝑋))
164163breq2d 4595 . . . . . . 7 (𝑛 = (-𝑚 − 2) → (𝑌 ((𝑛 + 1) · 𝑋) ↔ 𝑌 (((-𝑚 − 2) + 1) · 𝑋)))
165161, 164anbi12d 743 . . . . . 6 (𝑛 = (-𝑚 − 2) → (((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)) ↔ (((-𝑚 − 2) · 𝑋) < 𝑌𝑌 (((-𝑚 − 2) + 1) · 𝑋))))
166165rspcev 3282 . . . . 5 (((-𝑚 − 2) ∈ ℤ ∧ (((-𝑚 − 2) · 𝑋) < 𝑌𝑌 (((-𝑚 − 2) + 1) · 𝑋))) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
16765, 136, 159, 166syl12anc 1316 . . . 4 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌)) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
16876ad2antrr 758 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → (𝑚 + 1) ∈ ℤ)
169168znegcld 11360 . . . . 5 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → -(𝑚 + 1) ∈ ℤ)
1702ad2antrr 758 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ (𝑚 ∈ ℕ0 ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋)) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋))) → 𝑊 ∈ oGrp)
17172ad2antrr 758 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ (𝑚 ∈ ℕ0 ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋)) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋))) → (oppg𝑊) ∈ oGrp)
172170, 171jca 553 . . . . . . . 8 (((𝜑𝑌 < 0 ) ∧ (𝑚 ∈ ℕ0 ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋)) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋))) → (𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp))
1731723anassrs 1282 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → (𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp))
174123ad2antrr 758 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘𝑌) ∈ 𝐵)
17579ad2antrr 758 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((𝑚 + 1) · 𝑋) ∈ 𝐵)
176 simpr 476 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋))
1777, 17, 9ogrpinvlt 29055 . . . . . . . 8 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp) ∧ ((invg𝑊)‘𝑌) ∈ 𝐵 ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵) → (((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋) ↔ ((invg𝑊)‘((𝑚 + 1) · 𝑋)) < ((invg𝑊)‘((invg𝑊)‘𝑌))))
178177biimpa 500 . . . . . . 7 ((((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp) ∧ ((invg𝑊)‘𝑌) ∈ 𝐵 ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘((𝑚 + 1) · 𝑋)) < ((invg𝑊)‘((invg𝑊)‘𝑌)))
179173, 174, 175, 176, 178syl31anc 1321 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘((𝑚 + 1) · 𝑋)) < ((invg𝑊)‘((invg𝑊)‘𝑌)))
180114ad2antrr 758 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → (-(𝑚 + 1) · 𝑋) = ((invg𝑊)‘((𝑚 + 1) · 𝑋)))
181180eqcomd 2616 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘((𝑚 + 1) · 𝑋)) = (-(𝑚 + 1) · 𝑋))
182133ad4antr 764 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘((invg𝑊)‘𝑌)) = 𝑌)
183179, 181, 1823brtr3d 4614 . . . . 5 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → (-(𝑚 + 1) · 𝑋) < 𝑌)
184 simp-4l 802 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → 𝜑)
1857, 8mulgcl 17382 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝑋𝐵) → (𝑚 · 𝑋) ∈ 𝐵)
18675, 60, 77, 185syl3anc 1318 . . . . . . . . . . 11 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (𝑚 · 𝑋) ∈ 𝐵)
1877, 17, 9ogrpinvlt 29055 . . . . . . . . . . 11 (((𝑊 ∈ oGrp ∧ (oppg𝑊) ∈ oGrp) ∧ (𝑚 · 𝑋) ∈ 𝐵 ∧ ((invg𝑊)‘𝑌) ∈ 𝐵) → ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ↔ ((invg𝑊)‘((invg𝑊)‘𝑌)) < ((invg𝑊)‘(𝑚 · 𝑋))))
18874, 186, 123, 187syl3anc 1318 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ↔ ((invg𝑊)‘((invg𝑊)‘𝑌)) < ((invg𝑊)‘(𝑚 · 𝑋))))
189188biimpa 500 . . . . . . . . 9 ((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 · 𝑋) < ((invg𝑊)‘𝑌)) → ((invg𝑊)‘((invg𝑊)‘𝑌)) < ((invg𝑊)‘(𝑚 · 𝑋)))
190189adantrr 749 . . . . . . . 8 ((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) → ((invg𝑊)‘((invg𝑊)‘𝑌)) < ((invg𝑊)‘(𝑚 · 𝑋)))
191190adantr 480 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘((invg𝑊)‘𝑌)) < ((invg𝑊)‘(𝑚 · 𝑋)))
192 negdi 10217 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝑚 + 1) = (-𝑚 + -1))
19366, 40, 192sylancl 693 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 → -(𝑚 + 1) = (-𝑚 + -1))
194193oveq1d 6564 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0 → (-(𝑚 + 1) + 1) = ((-𝑚 + -1) + 1))
19566negcld 10258 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0 → -𝑚 ∈ ℂ)
19691negcld 10258 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ0 → -1 ∈ ℂ)
197195, 196, 91addassd 9941 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 → ((-𝑚 + -1) + 1) = (-𝑚 + (-1 + 1)))
19843oveq2i 6560 . . . . . . . . . . . . . . 15 (-𝑚 + (-1 + 1)) = (-𝑚 + 0)
199198a1i 11 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 → (-𝑚 + (-1 + 1)) = (-𝑚 + 0))
200195addid1d 10115 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 → (-𝑚 + 0) = -𝑚)
201197, 199, 2003eqtrd 2648 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0 → ((-𝑚 + -1) + 1) = -𝑚)
202194, 201eqtrd 2644 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0 → (-(𝑚 + 1) + 1) = -𝑚)
203202oveq1d 6564 . . . . . . . . . . 11 (𝑚 ∈ ℕ0 → ((-(𝑚 + 1) + 1) · 𝑋) = (-𝑚 · 𝑋))
204203adantl 481 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((-(𝑚 + 1) + 1) · 𝑋) = (-𝑚 · 𝑋))
2057, 8, 9mulgneg 17383 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝑋𝐵) → (-𝑚 · 𝑋) = ((invg𝑊)‘(𝑚 · 𝑋)))
20675, 60, 77, 205syl3anc 1318 . . . . . . . . . 10 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (-𝑚 · 𝑋) = ((invg𝑊)‘(𝑚 · 𝑋)))
207204, 206eqtrd 2644 . . . . . . . . 9 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → ((-(𝑚 + 1) + 1) · 𝑋) = ((invg𝑊)‘(𝑚 · 𝑋)))
208207ad2antrr 758 . . . . . . . 8 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((-(𝑚 + 1) + 1) · 𝑋) = ((invg𝑊)‘(𝑚 · 𝑋)))
209208eqcomd 2616 . . . . . . 7 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ((invg𝑊)‘(𝑚 · 𝑋)) = ((-(𝑚 + 1) + 1) · 𝑋))
210191, 182, 2093brtr3d 4614 . . . . . 6 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → 𝑌 < ((-(𝑚 + 1) + 1) · 𝑋))
211 ovex 6577 . . . . . . . 8 ((-(𝑚 + 1) + 1) · 𝑋) ∈ V
212211a1i 11 . . . . . . 7 (𝜑 → ((-(𝑚 + 1) + 1) · 𝑋) ∈ V)
21334, 17pltle 16784 . . . . . . 7 ((𝑊 ∈ oGrp ∧ 𝑌𝐵 ∧ ((-(𝑚 + 1) + 1) · 𝑋) ∈ V) → (𝑌 < ((-(𝑚 + 1) + 1) · 𝑋) → 𝑌 ((-(𝑚 + 1) + 1) · 𝑋)))
2142, 120, 212, 213syl3anc 1318 . . . . . 6 (𝜑 → (𝑌 < ((-(𝑚 + 1) + 1) · 𝑋) → 𝑌 ((-(𝑚 + 1) + 1) · 𝑋)))
215184, 210, 214sylc 63 . . . . 5 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → 𝑌 ((-(𝑚 + 1) + 1) · 𝑋))
216 oveq1 6556 . . . . . . . 8 (𝑛 = -(𝑚 + 1) → (𝑛 · 𝑋) = (-(𝑚 + 1) · 𝑋))
217216breq1d 4593 . . . . . . 7 (𝑛 = -(𝑚 + 1) → ((𝑛 · 𝑋) < 𝑌 ↔ (-(𝑚 + 1) · 𝑋) < 𝑌))
218 oveq1 6556 . . . . . . . . 9 (𝑛 = -(𝑚 + 1) → (𝑛 + 1) = (-(𝑚 + 1) + 1))
219218oveq1d 6564 . . . . . . . 8 (𝑛 = -(𝑚 + 1) → ((𝑛 + 1) · 𝑋) = ((-(𝑚 + 1) + 1) · 𝑋))
220219breq2d 4595 . . . . . . 7 (𝑛 = -(𝑚 + 1) → (𝑌 ((𝑛 + 1) · 𝑋) ↔ 𝑌 ((-(𝑚 + 1) + 1) · 𝑋)))
221217, 220anbi12d 743 . . . . . 6 (𝑛 = -(𝑚 + 1) → (((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)) ↔ ((-(𝑚 + 1) · 𝑋) < 𝑌𝑌 ((-(𝑚 + 1) + 1) · 𝑋))))
222221rspcev 3282 . . . . 5 ((-(𝑚 + 1) ∈ ℤ ∧ ((-(𝑚 + 1) · 𝑋) < 𝑌𝑌 ((-(𝑚 + 1) + 1) · 𝑋))) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
223169, 183, 215, 222syl12anc 1316 . . . 4 (((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) ∧ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
2247, 34, 17tlt2 28995 . . . . . 6 ((𝑊 ∈ Toset ∧ ((𝑚 + 1) · 𝑋) ∈ 𝐵 ∧ ((invg𝑊)‘𝑌) ∈ 𝐵) → (((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌) ∨ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)))
225148, 79, 123, 224syl3anc 1318 . . . . 5 (((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) → (((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌) ∨ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)))
226225adantr 480 . . . 4 ((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) → (((𝑚 + 1) · 𝑋) ((invg𝑊)‘𝑌) ∨ ((invg𝑊)‘𝑌) < ((𝑚 + 1) · 𝑋)))
227167, 223, 226mpjaodan 823 . . 3 ((((𝜑𝑌 < 0 ) ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋))) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
2282adantr 480 . . . 4 ((𝜑𝑌 < 0 ) → 𝑊 ∈ oGrp)
229 archirng.2 . . . . 5 (𝜑𝑊 ∈ Archi)
230229adantr 480 . . . 4 ((𝜑𝑌 < 0 ) → 𝑊 ∈ Archi)
2316adantr 480 . . . 4 ((𝜑𝑌 < 0 ) → 𝑋𝐵)
232122adantr 480 . . . 4 ((𝜑𝑌 < 0 ) → ((invg𝑊)‘𝑌) ∈ 𝐵)
23316adantr 480 . . . 4 ((𝜑𝑌 < 0 ) → 0 < 𝑋)
234133breq1d 4593 . . . . . 6 (𝜑 → (((invg𝑊)‘((invg𝑊)‘𝑌)) < 0𝑌 < 0 ))
235234biimpar 501 . . . . 5 ((𝜑𝑌 < 0 ) → ((invg𝑊)‘((invg𝑊)‘𝑌)) < 0 )
2367, 17, 9, 18ogrpinv0lt 29054 . . . . . . 7 ((𝑊 ∈ oGrp ∧ ((invg𝑊)‘𝑌) ∈ 𝐵) → ( 0 < ((invg𝑊)‘𝑌) ↔ ((invg𝑊)‘((invg𝑊)‘𝑌)) < 0 ))
2372, 122, 236syl2anc 691 . . . . . 6 (𝜑 → ( 0 < ((invg𝑊)‘𝑌) ↔ ((invg𝑊)‘((invg𝑊)‘𝑌)) < 0 ))
238237biimpar 501 . . . . 5 ((𝜑 ∧ ((invg𝑊)‘((invg𝑊)‘𝑌)) < 0 ) → 0 < ((invg𝑊)‘𝑌))
239235, 238syldan 486 . . . 4 ((𝜑𝑌 < 0 ) → 0 < ((invg𝑊)‘𝑌))
2407, 18, 17, 34, 8, 228, 230, 231, 232, 233, 239archirng 29073 . . 3 ((𝜑𝑌 < 0 ) → ∃𝑚 ∈ ℕ0 ((𝑚 · 𝑋) < ((invg𝑊)‘𝑌) ∧ ((invg𝑊)‘𝑌) ((𝑚 + 1) · 𝑋)))
241227, 240r19.29a 3060 . 2 ((𝜑𝑌 < 0 ) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
242 nn0ssz 11275 . . 3 0 ⊆ ℤ
2432adantr 480 . . . 4 ((𝜑0 < 𝑌) → 𝑊 ∈ oGrp)
244229adantr 480 . . . 4 ((𝜑0 < 𝑌) → 𝑊 ∈ Archi)
2456adantr 480 . . . 4 ((𝜑0 < 𝑌) → 𝑋𝐵)
246120adantr 480 . . . 4 ((𝜑0 < 𝑌) → 𝑌𝐵)
24716adantr 480 . . . 4 ((𝜑0 < 𝑌) → 0 < 𝑋)
248 simpr 476 . . . 4 ((𝜑0 < 𝑌) → 0 < 𝑌)
2497, 18, 17, 34, 8, 243, 244, 245, 246, 247, 248archirng 29073 . . 3 ((𝜑0 < 𝑌) → ∃𝑛 ∈ ℕ0 ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
250 ssrexv 3630 . . 3 (ℕ0 ⊆ ℤ → (∃𝑛 ∈ ℕ0 ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋))))
251242, 249, 250mpsyl 66 . 2 ((𝜑0 < 𝑌) → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
2527, 17tlt3 28996 . . 3 ((𝑊 ∈ Toset ∧ 𝑌𝐵0𝐵) → (𝑌 = 0𝑌 < 00 < 𝑌))
25329, 120, 33, 252syl3anc 1318 . 2 (𝜑 → (𝑌 = 0𝑌 < 00 < 𝑌))
25458, 241, 251, 253mpjao3dan 1387 1 (𝜑 → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   ∨ w3o 1030   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∃wrex 2897  Vcvv 3173   ⊆ wss 3540   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  0cc0 9815  1c1 9816   + caddc 9818   − cmin 10145  -cneg 10146  2c2 10947  ℕ0cn0 11169  ℤcz 11254  Basecbs 15695  +gcplusg 15768  lecple 15775  0gc0g 15923  Posetcpo 16763  ltcplt 16764  Tosetctos 16856  Grpcgrp 17245  invgcminusg 17246  .gcmg 17363  oppgcoppg 17598  oMndcomnd 29028  oGrpcogrp 29029  Archicarchi 29062 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-seq 12664  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-ple 15788  df-0g 15925  df-preset 16751  df-poset 16769  df-plt 16781  df-toset 16857  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-mulg 17364  df-oppg 17599  df-omnd 29030  df-ogrp 29031  df-inftm 29063  df-archi 29064 This theorem is referenced by:  archiabllem2c  29080
 Copyright terms: Public domain W3C validator