Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archirngz Structured version   Unicode version

Theorem archirngz 26228
Description: Property of Archimedean left and right ordered groups. (Contributed by Thierry Arnoux, 6-May-2018.)
Hypotheses
Ref Expression
archirng.b  |-  B  =  ( Base `  W
)
archirng.0  |-  .0.  =  ( 0g `  W )
archirng.i  |-  .<  =  ( lt `  W )
archirng.l  |-  .<_  =  ( le `  W )
archirng.x  |-  .x.  =  (.g
`  W )
archirng.1  |-  ( ph  ->  W  e. oGrp )
archirng.2  |-  ( ph  ->  W  e. Archi )
archirng.3  |-  ( ph  ->  X  e.  B )
archirng.4  |-  ( ph  ->  Y  e.  B )
archirng.5  |-  ( ph  ->  .0.  .<  X )
archirngz.1  |-  ( ph  ->  (oppg
`  W )  e. oGrp
)
Assertion
Ref Expression
archirngz  |-  ( ph  ->  E. n  e.  ZZ  ( ( n  .x.  X )  .<  Y  /\  Y  .<_  ( ( n  +  1 )  .x.  X ) ) )
Distinct variable groups:    n, X    n, Y    ph, n    .0. , n    .<_ , n    .< , n    .x. , n
Allowed substitution hints:    B( n)    W( n)

Proof of Theorem archirngz
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 neg1z 10702 . . 3  |-  -u 1  e.  ZZ
2 archirng.1 . . . . . . . . . 10  |-  ( ph  ->  W  e. oGrp )
3 isogrp 26187 . . . . . . . . . . 11  |-  ( W  e. oGrp 
<->  ( W  e.  Grp  /\  W  e. oMnd ) )
43simplbi 460 . . . . . . . . . 10  |-  ( W  e. oGrp  ->  W  e.  Grp )
52, 4syl 16 . . . . . . . . 9  |-  ( ph  ->  W  e.  Grp )
6 1z 10697 . . . . . . . . . 10  |-  1  e.  ZZ
76a1i 11 . . . . . . . . 9  |-  ( ph  ->  1  e.  ZZ )
8 archirng.3 . . . . . . . . 9  |-  ( ph  ->  X  e.  B )
9 archirng.b . . . . . . . . . 10  |-  B  =  ( Base `  W
)
10 archirng.x . . . . . . . . . 10  |-  .x.  =  (.g
`  W )
11 eqid 2443 . . . . . . . . . 10  |-  ( invg `  W )  =  ( invg `  W )
129, 10, 11mulgneg 15666 . . . . . . . . 9  |-  ( ( W  e.  Grp  /\  1  e.  ZZ  /\  X  e.  B )  ->  ( -u 1  .x.  X )  =  ( ( invg `  W ) `
 ( 1  .x. 
X ) ) )
135, 7, 8, 12syl3anc 1218 . . . . . . . 8  |-  ( ph  ->  ( -u 1  .x. 
X )  =  ( ( invg `  W ) `  (
1  .x.  X )
) )
149, 10mulg1 15655 . . . . . . . . . 10  |-  ( X  e.  B  ->  (
1  .x.  X )  =  X )
158, 14syl 16 . . . . . . . . 9  |-  ( ph  ->  ( 1  .x.  X
)  =  X )
1615fveq2d 5716 . . . . . . . 8  |-  ( ph  ->  ( ( invg `  W ) `  (
1  .x.  X )
)  =  ( ( invg `  W
) `  X )
)
1713, 16eqtrd 2475 . . . . . . 7  |-  ( ph  ->  ( -u 1  .x. 
X )  =  ( ( invg `  W ) `  X
) )
18 archirng.5 . . . . . . . 8  |-  ( ph  ->  .0.  .<  X )
19 archirng.i . . . . . . . . . 10  |-  .<  =  ( lt `  W )
20 archirng.0 . . . . . . . . . 10  |-  .0.  =  ( 0g `  W )
219, 19, 11, 20ogrpinv0lt 26208 . . . . . . . . 9  |-  ( ( W  e. oGrp  /\  X  e.  B )  ->  (  .0.  .<  X  <->  ( ( invg `  W ) `
 X )  .<  .0.  ) )
2221biimpa 484 . . . . . . . 8  |-  ( ( ( W  e. oGrp  /\  X  e.  B )  /\  .0.  .<  X )  ->  ( ( invg `  W ) `  X
)  .<  .0.  )
232, 8, 18, 22syl21anc 1217 . . . . . . 7  |-  ( ph  ->  ( ( invg `  W ) `  X
)  .<  .0.  )
2417, 23eqbrtrd 4333 . . . . . 6  |-  ( ph  ->  ( -u 1  .x. 
X )  .<  .0.  )
2524adantr 465 . . . . 5  |-  ( (
ph  /\  Y  =  .0.  )  ->  ( -u
1  .x.  X )  .<  .0.  )
26 simpr 461 . . . . 5  |-  ( (
ph  /\  Y  =  .0.  )  ->  Y  =  .0.  )
2725, 26breqtrrd 4339 . . . 4  |-  ( (
ph  /\  Y  =  .0.  )  ->  ( -u
1  .x.  X )  .<  Y )
283simprbi 464 . . . . . . . . 9  |-  ( W  e. oGrp  ->  W  e. oMnd )
29 omndtos 26190 . . . . . . . . 9  |-  ( W  e. oMnd  ->  W  e. Toset )
302, 28, 293syl 20 . . . . . . . 8  |-  ( ph  ->  W  e. Toset )
31 tospos 26141 . . . . . . . 8  |-  ( W  e. Toset  ->  W  e.  Poset )
3230, 31syl 16 . . . . . . 7  |-  ( ph  ->  W  e.  Poset )
339, 20grpidcl 15587 . . . . . . . 8  |-  ( W  e.  Grp  ->  .0.  e.  B )
342, 4, 333syl 20 . . . . . . 7  |-  ( ph  ->  .0.  e.  B )
35 archirng.l . . . . . . . 8  |-  .<_  =  ( le `  W )
369, 35posref 15142 . . . . . . 7  |-  ( ( W  e.  Poset  /\  .0.  e.  B )  ->  .0.  .<_  .0.  )
3732, 34, 36syl2anc 661 . . . . . 6  |-  ( ph  ->  .0.  .<_  .0.  )
3837adantr 465 . . . . 5  |-  ( (
ph  /\  Y  =  .0.  )  ->  .0.  .<_  .0.  )
39 1m1e0 10411 . . . . . . . . . 10  |-  ( 1  -  1 )  =  0
4039negeqi 9624 . . . . . . . . 9  |-  -u (
1  -  1 )  =  -u 0
41 ax-1cn 9361 . . . . . . . . . 10  |-  1  e.  CC
4241, 41negsubdii 9714 . . . . . . . . 9  |-  -u (
1  -  1 )  =  ( -u 1  +  1 )
43 neg0 9676 . . . . . . . . 9  |-  -u 0  =  0
4440, 42, 433eqtr3i 2471 . . . . . . . 8  |-  ( -u
1  +  1 )  =  0
4544oveq1i 6122 . . . . . . 7  |-  ( (
-u 1  +  1 )  .x.  X )  =  ( 0  .x. 
X )
469, 20, 10mulg0 15653 . . . . . . . 8  |-  ( X  e.  B  ->  (
0  .x.  X )  =  .0.  )
478, 46syl 16 . . . . . . 7  |-  ( ph  ->  ( 0  .x.  X
)  =  .0.  )
4845, 47syl5eq 2487 . . . . . 6  |-  ( ph  ->  ( ( -u 1  +  1 )  .x.  X )  =  .0.  )
4948adantr 465 . . . . 5  |-  ( (
ph  /\  Y  =  .0.  )  ->  ( (
-u 1  +  1 )  .x.  X )  =  .0.  )
5038, 26, 493brtr4d 4343 . . . 4  |-  ( (
ph  /\  Y  =  .0.  )  ->  Y  .<_  ( ( -u 1  +  1 )  .x.  X
) )
5127, 50jca 532 . . 3  |-  ( (
ph  /\  Y  =  .0.  )  ->  ( (
-u 1  .x.  X
)  .<  Y  /\  Y  .<_  ( ( -u 1  +  1 )  .x.  X ) ) )
52 oveq1 6119 . . . . . 6  |-  ( n  =  -u 1  ->  (
n  .x.  X )  =  ( -u 1  .x.  X ) )
5352breq1d 4323 . . . . 5  |-  ( n  =  -u 1  ->  (
( n  .x.  X
)  .<  Y  <->  ( -u 1  .x.  X )  .<  Y ) )
54 oveq1 6119 . . . . . . 7  |-  ( n  =  -u 1  ->  (
n  +  1 )  =  ( -u 1  +  1 ) )
5554oveq1d 6127 . . . . . 6  |-  ( n  =  -u 1  ->  (
( n  +  1 )  .x.  X )  =  ( ( -u
1  +  1 ) 
.x.  X ) )
5655breq2d 4325 . . . . 5  |-  ( n  =  -u 1  ->  ( Y  .<_  ( ( n  +  1 )  .x.  X )  <->  Y  .<_  ( ( -u 1  +  1 )  .x.  X
) ) )
5753, 56anbi12d 710 . . . 4  |-  ( n  =  -u 1  ->  (
( ( n  .x.  X )  .<  Y  /\  Y  .<_  ( ( n  +  1 )  .x.  X ) )  <->  ( ( -u 1  .x.  X ) 
.<  Y  /\  Y  .<_  ( ( -u 1  +  1 )  .x.  X
) ) ) )
5857rspcev 3094 . . 3  |-  ( (
-u 1  e.  ZZ  /\  ( ( -u 1  .x.  X )  .<  Y  /\  Y  .<_  ( ( -u
1  +  1 ) 
.x.  X ) ) )  ->  E. n  e.  ZZ  ( ( n 
.x.  X )  .<  Y  /\  Y  .<_  ( ( n  +  1 ) 
.x.  X ) ) )
591, 51, 58sylancr 663 . 2  |-  ( (
ph  /\  Y  =  .0.  )  ->  E. n  e.  ZZ  ( ( n 
.x.  X )  .<  Y  /\  Y  .<_  ( ( n  +  1 ) 
.x.  X ) ) )
60 nn0ssz 10688 . . . . . . . . 9  |-  NN0  C_  ZZ
61 simpr 461 . . . . . . . . 9  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  m  e.  NN0 )
6260, 61sseldi 3375 . . . . . . . 8  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  m  e.  ZZ )
6362ad2antrr 725 . . . . . . 7  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( m  + 
1 )  .x.  X
)  .<_  ( ( invg `  W ) `
 Y ) )  ->  m  e.  ZZ )
6463znegcld 10770 . . . . . 6  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( m  + 
1 )  .x.  X
)  .<_  ( ( invg `  W ) `
 Y ) )  ->  -u m  e.  ZZ )
65 2z 10699 . . . . . . 7  |-  2  e.  ZZ
6665a1i 11 . . . . . 6  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( m  + 
1 )  .x.  X
)  .<_  ( ( invg `  W ) `
 Y ) )  ->  2  e.  ZZ )
6764, 66zsubcld 10773 . . . . 5  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( m  + 
1 )  .x.  X
)  .<_  ( ( invg `  W ) `
 Y ) )  ->  ( -u m  -  2 )  e.  ZZ )
68 nn0cn 10610 . . . . . . . . . . 11  |-  ( m  e.  NN0  ->  m  e.  CC )
6961, 68syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  m  e.  CC )
70 2cnd 10415 . . . . . . . . . 10  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  2  e.  CC )
7169, 70negdi2d 9754 . . . . . . . . 9  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  -u (
m  +  2 )  =  ( -u m  -  2 ) )
7271oveq1d 6127 . . . . . . . 8  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  ( -u ( m  +  2 )  .x.  X )  =  ( ( -u m  -  2 ) 
.x.  X ) )
732adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  Y  .<  .0.  )  ->  W  e. oGrp )
7473adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  W  e. oGrp )
75 archirngz.1 . . . . . . . . . . . . 13  |-  ( ph  ->  (oppg
`  W )  e. oGrp
)
7675adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  Y  .<  .0.  )  ->  (oppg
`  W )  e. oGrp
)
7776adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  (oppg `  W
)  e. oGrp )
7874, 77jca 532 . . . . . . . . . 10  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  ( W  e. oGrp  /\  (oppg `  W
)  e. oGrp ) )
795ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  W  e.  Grp )
8062peano2zd 10771 . . . . . . . . . . 11  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  (
m  +  1 )  e.  ZZ )
818adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  Y  .<  .0.  )  ->  X  e.  B )
8281adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  X  e.  B )
839, 10mulgcl 15665 . . . . . . . . . . 11  |-  ( ( W  e.  Grp  /\  ( m  +  1
)  e.  ZZ  /\  X  e.  B )  ->  ( ( m  + 
1 )  .x.  X
)  e.  B )
8479, 80, 82, 83syl3anc 1218 . . . . . . . . . 10  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  (
( m  +  1 )  .x.  X )  e.  B )
8565a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  2  e.  ZZ )
8662, 85zaddcld 10772 . . . . . . . . . . 11  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  (
m  +  2 )  e.  ZZ )
879, 10mulgcl 15665 . . . . . . . . . . 11  |-  ( ( W  e.  Grp  /\  ( m  +  2
)  e.  ZZ  /\  X  e.  B )  ->  ( ( m  + 
2 )  .x.  X
)  e.  B )
8879, 86, 82, 87syl3anc 1218 . . . . . . . . . 10  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  (
( m  +  2 )  .x.  X )  e.  B )
8979, 33syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  .0.  e.  B )
9018adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  Y  .<  .0.  )  ->  .0.  .<  X )
9190adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  .0.  .<  X )
92 eqid 2443 . . . . . . . . . . . . 13  |-  ( +g  `  W )  =  ( +g  `  W )
939, 19, 92ogrpaddlt 26203 . . . . . . . . . . . 12  |-  ( ( W  e. oGrp  /\  (  .0.  e.  B  /\  X  e.  B  /\  (
( m  +  1 )  .x.  X )  e.  B )  /\  .0.  .<  X )  -> 
(  .0.  ( +g  `  W ) ( ( m  +  1 ) 
.x.  X ) ) 
.<  ( X ( +g  `  W ) ( ( m  +  1 ) 
.x.  X ) ) )
9474, 89, 82, 84, 91, 93syl131anc 1231 . . . . . . . . . . 11  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  (  .0.  ( +g  `  W
) ( ( m  +  1 )  .x.  X ) )  .< 
( X ( +g  `  W ) ( ( m  +  1 ) 
.x.  X ) ) )
959, 92, 20grplid 15589 . . . . . . . . . . . 12  |-  ( ( W  e.  Grp  /\  ( ( m  + 
1 )  .x.  X
)  e.  B )  ->  (  .0.  ( +g  `  W ) ( ( m  +  1 )  .x.  X ) )  =  ( ( m  +  1 ) 
.x.  X ) )
9679, 84, 95syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  (  .0.  ( +g  `  W
) ( ( m  +  1 )  .x.  X ) )  =  ( ( m  + 
1 )  .x.  X
) )
9741a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  NN0  ->  1  e.  CC )
9868, 97, 97addassd 9429 . . . . . . . . . . . . . . . 16  |-  ( m  e.  NN0  ->  ( ( m  +  1 )  +  1 )  =  ( m  +  ( 1  +  1 ) ) )
99 1p1e2 10456 . . . . . . . . . . . . . . . . 17  |-  ( 1  +  1 )  =  2
10099oveq2i 6123 . . . . . . . . . . . . . . . 16  |-  ( m  +  ( 1  +  1 ) )  =  ( m  +  2 )
10198, 100syl6eq 2491 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN0  ->  ( ( m  +  1 )  +  1 )  =  ( m  +  2 ) )
10268, 97addcld 9426 . . . . . . . . . . . . . . . 16  |-  ( m  e.  NN0  ->  ( m  +  1 )  e.  CC )
103102, 97addcomd 9592 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN0  ->  ( ( m  +  1 )  +  1 )  =  ( 1  +  ( m  +  1 ) ) )
104101, 103eqtr3d 2477 . . . . . . . . . . . . . 14  |-  ( m  e.  NN0  ->  ( m  +  2 )  =  ( 1  +  ( m  +  1 ) ) )
105104oveq1d 6127 . . . . . . . . . . . . 13  |-  ( m  e.  NN0  ->  ( ( m  +  2 ) 
.x.  X )  =  ( ( 1  +  ( m  +  1 ) )  .x.  X
) )
10661, 105syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  (
( m  +  2 )  .x.  X )  =  ( ( 1  +  ( m  + 
1 ) )  .x.  X ) )
1076a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  1  e.  ZZ )
1089, 10, 92mulgdir 15673 . . . . . . . . . . . . 13  |-  ( ( W  e.  Grp  /\  ( 1  e.  ZZ  /\  ( m  +  1 )  e.  ZZ  /\  X  e.  B )
)  ->  ( (
1  +  ( m  +  1 ) ) 
.x.  X )  =  ( ( 1  .x. 
X ) ( +g  `  W ) ( ( m  +  1 ) 
.x.  X ) ) )
10979, 107, 80, 82, 108syl13anc 1220 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  (
( 1  +  ( m  +  1 ) )  .x.  X )  =  ( ( 1 
.x.  X ) ( +g  `  W ) ( ( m  + 
1 )  .x.  X
) ) )
11082, 14syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  (
1  .x.  X )  =  X )
111110oveq1d 6127 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  (
( 1  .x.  X
) ( +g  `  W
) ( ( m  +  1 )  .x.  X ) )  =  ( X ( +g  `  W ) ( ( m  +  1 ) 
.x.  X ) ) )
112106, 109, 1113eqtrrd 2480 . . . . . . . . . . 11  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  ( X ( +g  `  W
) ( ( m  +  1 )  .x.  X ) )  =  ( ( m  + 
2 )  .x.  X
) )
11394, 96, 1123brtr3d 4342 . . . . . . . . . 10  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  (
( m  +  1 )  .x.  X ) 
.<  ( ( m  + 
2 )  .x.  X
) )
1149, 19, 11ogrpinvlt 26209 . . . . . . . . . . 11  |-  ( ( ( W  e. oGrp  /\  (oppg `  W )  e. oGrp )  /\  ( ( m  + 
1 )  .x.  X
)  e.  B  /\  ( ( m  + 
2 )  .x.  X
)  e.  B )  ->  ( ( ( m  +  1 ) 
.x.  X )  .< 
( ( m  + 
2 )  .x.  X
)  <->  ( ( invg `  W ) `
 ( ( m  +  2 )  .x.  X ) )  .< 
( ( invg `  W ) `  (
( m  +  1 )  .x.  X ) ) ) )
115114biimpa 484 . . . . . . . . . 10  |-  ( ( ( ( W  e. oGrp  /\  (oppg
`  W )  e. oGrp
)  /\  ( (
m  +  1 ) 
.x.  X )  e.  B  /\  ( ( m  +  2 ) 
.x.  X )  e.  B )  /\  (
( m  +  1 )  .x.  X ) 
.<  ( ( m  + 
2 )  .x.  X
) )  ->  (
( invg `  W ) `  (
( m  +  2 )  .x.  X ) )  .<  ( ( invg `  W ) `
 ( ( m  +  1 )  .x.  X ) ) )
11678, 84, 88, 113, 115syl31anc 1221 . . . . . . . . 9  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  (
( invg `  W ) `  (
( m  +  2 )  .x.  X ) )  .<  ( ( invg `  W ) `
 ( ( m  +  1 )  .x.  X ) ) )
1179, 10, 11mulgneg 15666 . . . . . . . . . 10  |-  ( ( W  e.  Grp  /\  ( m  +  2
)  e.  ZZ  /\  X  e.  B )  ->  ( -u ( m  +  2 )  .x.  X )  =  ( ( invg `  W ) `  (
( m  +  2 )  .x.  X ) ) )
11879, 86, 82, 117syl3anc 1218 . . . . . . . . 9  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  ( -u ( m  +  2 )  .x.  X )  =  ( ( invg `  W ) `
 ( ( m  +  2 )  .x.  X ) ) )
1199, 10, 11mulgneg 15666 . . . . . . . . . 10  |-  ( ( W  e.  Grp  /\  ( m  +  1
)  e.  ZZ  /\  X  e.  B )  ->  ( -u ( m  +  1 )  .x.  X )  =  ( ( invg `  W ) `  (
( m  +  1 )  .x.  X ) ) )
12079, 80, 82, 119syl3anc 1218 . . . . . . . . 9  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  ( -u ( m  +  1 )  .x.  X )  =  ( ( invg `  W ) `
 ( ( m  +  1 )  .x.  X ) ) )
121116, 118, 1203brtr4d 4343 . . . . . . . 8  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  ( -u ( m  +  2 )  .x.  X ) 
.<  ( -u ( m  +  1 )  .x.  X ) )
12272, 121eqbrtrrd 4335 . . . . . . 7  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  (
( -u m  -  2 )  .x.  X ) 
.<  ( -u ( m  +  1 )  .x.  X ) )
123122ad2antrr 725 . . . . . 6  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( m  + 
1 )  .x.  X
)  .<_  ( ( invg `  W ) `
 Y ) )  ->  ( ( -u m  -  2 ) 
.x.  X )  .< 
( -u ( m  + 
1 )  .x.  X
) )
124120ad2antrr 725 . . . . . . 7  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( m  + 
1 )  .x.  X
)  .<_  ( ( invg `  W ) `
 Y ) )  ->  ( -u (
m  +  1 ) 
.x.  X )  =  ( ( invg `  W ) `  (
( m  +  1 )  .x.  X ) ) )
12532ad4antr 731 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( m  + 
1 )  .x.  X
)  .<_  ( ( invg `  W ) `
 Y ) )  ->  W  e.  Poset )
126 archirng.4 . . . . . . . . . . . . 13  |-  ( ph  ->  Y  e.  B )
1279, 11grpinvcl 15604 . . . . . . . . . . . . 13  |-  ( ( W  e.  Grp  /\  Y  e.  B )  ->  ( ( invg `  W ) `  Y
)  e.  B )
1285, 126, 127syl2anc 661 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( invg `  W ) `  Y
)  e.  B )
129128adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  Y  .<  .0.  )  ->  ( ( invg `  W ) `
 Y )  e.  B )
130129adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  (
( invg `  W ) `  Y
)  e.  B )
131130ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( m  + 
1 )  .x.  X
)  .<_  ( ( invg `  W ) `
 Y ) )  ->  ( ( invg `  W ) `
 Y )  e.  B )
13284ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( m  + 
1 )  .x.  X
)  .<_  ( ( invg `  W ) `
 Y ) )  ->  ( ( m  +  1 )  .x.  X )  e.  B
)
133 simplrr 760 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( m  + 
1 )  .x.  X
)  .<_  ( ( invg `  W ) `
 Y ) )  ->  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) )
134 simpr 461 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( m  + 
1 )  .x.  X
)  .<_  ( ( invg `  W ) `
 Y ) )  ->  ( ( m  +  1 )  .x.  X )  .<_  ( ( invg `  W
) `  Y )
)
1359, 35posasymb 15143 . . . . . . . . . 10  |-  ( ( W  e.  Poset  /\  (
( invg `  W ) `  Y
)  e.  B  /\  ( ( m  + 
1 )  .x.  X
)  e.  B )  ->  ( ( ( ( invg `  W ) `  Y
)  .<_  ( ( m  +  1 )  .x.  X )  /\  (
( m  +  1 )  .x.  X ) 
.<_  ( ( invg `  W ) `  Y
) )  <->  ( ( invg `  W ) `
 Y )  =  ( ( m  + 
1 )  .x.  X
) ) )
136135biimpa 484 . . . . . . . . 9  |-  ( ( ( W  e.  Poset  /\  ( ( invg `  W ) `  Y
)  e.  B  /\  ( ( m  + 
1 )  .x.  X
)  e.  B )  /\  ( ( ( invg `  W
) `  Y )  .<_  ( ( m  + 
1 )  .x.  X
)  /\  ( (
m  +  1 ) 
.x.  X )  .<_  ( ( invg `  W ) `  Y
) ) )  -> 
( ( invg `  W ) `  Y
)  =  ( ( m  +  1 ) 
.x.  X ) )
137125, 131, 132, 133, 134, 136syl32anc 1226 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( m  + 
1 )  .x.  X
)  .<_  ( ( invg `  W ) `
 Y ) )  ->  ( ( invg `  W ) `
 Y )  =  ( ( m  + 
1 )  .x.  X
) )
138137fveq2d 5716 . . . . . . 7  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( m  + 
1 )  .x.  X
)  .<_  ( ( invg `  W ) `
 Y ) )  ->  ( ( invg `  W ) `
 ( ( invg `  W ) `
 Y ) )  =  ( ( invg `  W ) `
 ( ( m  +  1 )  .x.  X ) ) )
1399, 11grpinvinv 15614 . . . . . . . . 9  |-  ( ( W  e.  Grp  /\  Y  e.  B )  ->  ( ( invg `  W ) `  (
( invg `  W ) `  Y
) )  =  Y )
1405, 126, 139syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( ( invg `  W ) `  (
( invg `  W ) `  Y
) )  =  Y )
141140ad4antr 731 . . . . . . 7  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( m  + 
1 )  .x.  X
)  .<_  ( ( invg `  W ) `
 Y ) )  ->  ( ( invg `  W ) `
 ( ( invg `  W ) `
 Y ) )  =  Y )
142124, 138, 1413eqtr2rd 2482 . . . . . 6  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( m  + 
1 )  .x.  X
)  .<_  ( ( invg `  W ) `
 Y ) )  ->  Y  =  (
-u ( m  + 
1 )  .x.  X
) )
143123, 142breqtrrd 4339 . . . . 5  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( m  + 
1 )  .x.  X
)  .<_  ( ( invg `  W ) `
 Y ) )  ->  ( ( -u m  -  2 ) 
.x.  X )  .<  Y )
14441a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  1  e.  CC )
14569, 70, 144addsubassd 9760 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  (
( m  +  2 )  -  1 )  =  ( m  +  ( 2  -  1 ) ) )
146 2m1e1 10457 . . . . . . . . . . . . 13  |-  ( 2  -  1 )  =  1
147146oveq2i 6123 . . . . . . . . . . . 12  |-  ( m  +  ( 2  -  1 ) )  =  ( m  +  1 )
148145, 147syl6req 2492 . . . . . . . . . . 11  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  (
m  +  1 )  =  ( ( m  +  2 )  - 
1 ) )
149148negeqd 9625 . . . . . . . . . 10  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  -u (
m  +  1 )  =  -u ( ( m  +  2 )  - 
1 ) )
15069, 70addcld 9426 . . . . . . . . . . 11  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  (
m  +  2 )  e.  CC )
151150, 144negsubdid 9755 . . . . . . . . . 10  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  -u (
( m  +  2 )  -  1 )  =  ( -u (
m  +  2 )  +  1 ) )
15271oveq1d 6127 . . . . . . . . . 10  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  ( -u ( m  +  2 )  +  1 )  =  ( ( -u m  -  2 )  +  1 ) )
153149, 151, 1523eqtrrd 2480 . . . . . . . . 9  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  (
( -u m  -  2 )  +  1 )  =  -u ( m  + 
1 ) )
154153oveq1d 6127 . . . . . . . 8  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  (
( ( -u m  -  2 )  +  1 )  .x.  X
)  =  ( -u ( m  +  1
)  .x.  X )
)
15530ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  W  e. Toset )
156155, 31syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  W  e.  Poset )
15762znegcld 10770 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  -u m  e.  ZZ )
158157, 85zsubcld 10773 . . . . . . . . . . 11  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  ( -u m  -  2 )  e.  ZZ )
159158peano2zd 10771 . . . . . . . . . 10  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  (
( -u m  -  2 )  +  1 )  e.  ZZ )
1609, 10mulgcl 15665 . . . . . . . . . 10  |-  ( ( W  e.  Grp  /\  ( ( -u m  -  2 )  +  1 )  e.  ZZ  /\  X  e.  B )  ->  ( ( (
-u m  -  2 )  +  1 ) 
.x.  X )  e.  B )
16179, 159, 82, 160syl3anc 1218 . . . . . . . . 9  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  (
( ( -u m  -  2 )  +  1 )  .x.  X
)  e.  B )
1629, 35posref 15142 . . . . . . . . 9  |-  ( ( W  e.  Poset  /\  (
( ( -u m  -  2 )  +  1 )  .x.  X
)  e.  B )  ->  ( ( (
-u m  -  2 )  +  1 ) 
.x.  X )  .<_  ( ( ( -u m  -  2 )  +  1 )  .x.  X ) )
163156, 161, 162syl2anc 661 . . . . . . . 8  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  (
( ( -u m  -  2 )  +  1 )  .x.  X
)  .<_  ( ( (
-u m  -  2 )  +  1 ) 
.x.  X ) )
164154, 163eqbrtrrd 4335 . . . . . . 7  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  ( -u ( m  +  1 )  .x.  X ) 
.<_  ( ( ( -u m  -  2 )  +  1 )  .x.  X ) )
165164ad2antrr 725 . . . . . 6  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( m  + 
1 )  .x.  X
)  .<_  ( ( invg `  W ) `
 Y ) )  ->  ( -u (
m  +  1 ) 
.x.  X )  .<_  ( ( ( -u m  -  2 )  +  1 )  .x.  X ) )
166142, 165eqbrtrd 4333 . . . . 5  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( m  + 
1 )  .x.  X
)  .<_  ( ( invg `  W ) `
 Y ) )  ->  Y  .<_  ( ( ( -u m  - 
2 )  +  1 )  .x.  X ) )
167 oveq1 6119 . . . . . . . 8  |-  ( n  =  ( -u m  -  2 )  -> 
( n  .x.  X
)  =  ( (
-u m  -  2 )  .x.  X ) )
168167breq1d 4323 . . . . . . 7  |-  ( n  =  ( -u m  -  2 )  -> 
( ( n  .x.  X )  .<  Y  <->  ( ( -u m  -  2 ) 
.x.  X )  .<  Y ) )
169 oveq1 6119 . . . . . . . . 9  |-  ( n  =  ( -u m  -  2 )  -> 
( n  +  1 )  =  ( (
-u m  -  2 )  +  1 ) )
170169oveq1d 6127 . . . . . . . 8  |-  ( n  =  ( -u m  -  2 )  -> 
( ( n  + 
1 )  .x.  X
)  =  ( ( ( -u m  - 
2 )  +  1 )  .x.  X ) )
171170breq2d 4325 . . . . . . 7  |-  ( n  =  ( -u m  -  2 )  -> 
( Y  .<_  ( ( n  +  1 ) 
.x.  X )  <->  Y  .<_  ( ( ( -u m  -  2 )  +  1 )  .x.  X
) ) )
172168, 171anbi12d 710 . . . . . 6  |-  ( n  =  ( -u m  -  2 )  -> 
( ( ( n 
.x.  X )  .<  Y  /\  Y  .<_  ( ( n  +  1 ) 
.x.  X ) )  <-> 
( ( ( -u m  -  2 ) 
.x.  X )  .<  Y  /\  Y  .<_  ( ( ( -u m  - 
2 )  +  1 )  .x.  X ) ) ) )
173172rspcev 3094 . . . . 5  |-  ( ( ( -u m  - 
2 )  e.  ZZ  /\  ( ( ( -u m  -  2 ) 
.x.  X )  .<  Y  /\  Y  .<_  ( ( ( -u m  - 
2 )  +  1 )  .x.  X ) ) )  ->  E. n  e.  ZZ  ( ( n 
.x.  X )  .<  Y  /\  Y  .<_  ( ( n  +  1 ) 
.x.  X ) ) )
17467, 143, 166, 173syl12anc 1216 . . . 4  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( m  + 
1 )  .x.  X
)  .<_  ( ( invg `  W ) `
 Y ) )  ->  E. n  e.  ZZ  ( ( n  .x.  X )  .<  Y  /\  Y  .<_  ( ( n  +  1 )  .x.  X ) ) )
17580ad2antrr 725 . . . . . 6  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( invg `  W ) `  Y
)  .<  ( ( m  +  1 )  .x.  X ) )  -> 
( m  +  1 )  e.  ZZ )
176175znegcld 10770 . . . . 5  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( invg `  W ) `  Y
)  .<  ( ( m  +  1 )  .x.  X ) )  ->  -u ( m  +  1 )  e.  ZZ )
17773adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  (
m  e.  NN0  /\  ( ( m  .x.  X )  .<  (
( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) )  /\  (
( invg `  W ) `  Y
)  .<  ( ( m  +  1 )  .x.  X ) ) )  ->  W  e. oGrp )
17876adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  (
m  e.  NN0  /\  ( ( m  .x.  X )  .<  (
( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) )  /\  (
( invg `  W ) `  Y
)  .<  ( ( m  +  1 )  .x.  X ) ) )  ->  (oppg
`  W )  e. oGrp
)
179177, 178jca 532 . . . . . . . 8  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  (
m  e.  NN0  /\  ( ( m  .x.  X )  .<  (
( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) )  /\  (
( invg `  W ) `  Y
)  .<  ( ( m  +  1 )  .x.  X ) ) )  ->  ( W  e. oGrp  /\  (oppg
`  W )  e. oGrp
) )
1801793anassrs 1209 . . . . . . 7  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( invg `  W ) `  Y
)  .<  ( ( m  +  1 )  .x.  X ) )  -> 
( W  e. oGrp  /\  (oppg `  W )  e. oGrp )
)
181130ad2antrr 725 . . . . . . 7  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( invg `  W ) `  Y
)  .<  ( ( m  +  1 )  .x.  X ) )  -> 
( ( invg `  W ) `  Y
)  e.  B )
18284ad2antrr 725 . . . . . . 7  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( invg `  W ) `  Y
)  .<  ( ( m  +  1 )  .x.  X ) )  -> 
( ( m  + 
1 )  .x.  X
)  e.  B )
183 simpr 461 . . . . . . 7  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( invg `  W ) `  Y
)  .<  ( ( m  +  1 )  .x.  X ) )  -> 
( ( invg `  W ) `  Y
)  .<  ( ( m  +  1 )  .x.  X ) )
1849, 19, 11ogrpinvlt 26209 . . . . . . . 8  |-  ( ( ( W  e. oGrp  /\  (oppg `  W )  e. oGrp )  /\  ( ( invg `  W ) `  Y
)  e.  B  /\  ( ( m  + 
1 )  .x.  X
)  e.  B )  ->  ( ( ( invg `  W
) `  Y )  .<  ( ( m  + 
1 )  .x.  X
)  <->  ( ( invg `  W ) `
 ( ( m  +  1 )  .x.  X ) )  .< 
( ( invg `  W ) `  (
( invg `  W ) `  Y
) ) ) )
185184biimpa 484 . . . . . . 7  |-  ( ( ( ( W  e. oGrp  /\  (oppg
`  W )  e. oGrp
)  /\  ( ( invg `  W ) `
 Y )  e.  B  /\  ( ( m  +  1 ) 
.x.  X )  e.  B )  /\  (
( invg `  W ) `  Y
)  .<  ( ( m  +  1 )  .x.  X ) )  -> 
( ( invg `  W ) `  (
( m  +  1 )  .x.  X ) )  .<  ( ( invg `  W ) `
 ( ( invg `  W ) `
 Y ) ) )
186180, 181, 182, 183, 185syl31anc 1221 . . . . . 6  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( invg `  W ) `  Y
)  .<  ( ( m  +  1 )  .x.  X ) )  -> 
( ( invg `  W ) `  (
( m  +  1 )  .x.  X ) )  .<  ( ( invg `  W ) `
 ( ( invg `  W ) `
 Y ) ) )
187120ad2antrr 725 . . . . . . 7  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( invg `  W ) `  Y
)  .<  ( ( m  +  1 )  .x.  X ) )  -> 
( -u ( m  + 
1 )  .x.  X
)  =  ( ( invg `  W
) `  ( (
m  +  1 ) 
.x.  X ) ) )
188187eqcomd 2448 . . . . . 6  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( invg `  W ) `  Y
)  .<  ( ( m  +  1 )  .x.  X ) )  -> 
( ( invg `  W ) `  (
( m  +  1 )  .x.  X ) )  =  ( -u ( m  +  1
)  .x.  X )
)
189140ad4antr 731 . . . . . 6  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( invg `  W ) `  Y
)  .<  ( ( m  +  1 )  .x.  X ) )  -> 
( ( invg `  W ) `  (
( invg `  W ) `  Y
) )  =  Y )
190186, 188, 1893brtr3d 4342 . . . . 5  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( invg `  W ) `  Y
)  .<  ( ( m  +  1 )  .x.  X ) )  -> 
( -u ( m  + 
1 )  .x.  X
)  .<  Y )
191 simp-4l 765 . . . . . 6  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( invg `  W ) `  Y
)  .<  ( ( m  +  1 )  .x.  X ) )  ->  ph )
1929, 10mulgcl 15665 . . . . . . . . . . . 12  |-  ( ( W  e.  Grp  /\  m  e.  ZZ  /\  X  e.  B )  ->  (
m  .x.  X )  e.  B )
19379, 62, 82, 192syl3anc 1218 . . . . . . . . . . 11  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  (
m  .x.  X )  e.  B )
1949, 19, 11ogrpinvlt 26209 . . . . . . . . . . 11  |-  ( ( ( W  e. oGrp  /\  (oppg `  W )  e. oGrp )  /\  ( m  .x.  X
)  e.  B  /\  ( ( invg `  W ) `  Y
)  e.  B )  ->  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  <->  ( ( invg `  W ) `
 ( ( invg `  W ) `
 Y ) ) 
.<  ( ( invg `  W ) `  (
m  .x.  X )
) ) )
19578, 193, 130, 194syl3anc 1218 . . . . . . . . . 10  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  (
( m  .x.  X
)  .<  ( ( invg `  W ) `
 Y )  <->  ( ( invg `  W ) `
 ( ( invg `  W ) `
 Y ) ) 
.<  ( ( invg `  W ) `  (
m  .x.  X )
) ) )
196195biimpa 484 . . . . . . . . 9  |-  ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( m  .x.  X ) 
.<  ( ( invg `  W ) `  Y
) )  ->  (
( invg `  W ) `  (
( invg `  W ) `  Y
) )  .<  (
( invg `  W ) `  (
m  .x.  X )
) )
197196adantrr 716 . . . . . . . 8  |-  ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m  .x.  X )  .<  (
( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  -> 
( ( invg `  W ) `  (
( invg `  W ) `  Y
) )  .<  (
( invg `  W ) `  (
m  .x.  X )
) )
198197adantr 465 . . . . . . 7  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( invg `  W ) `  Y
)  .<  ( ( m  +  1 )  .x.  X ) )  -> 
( ( invg `  W ) `  (
( invg `  W ) `  Y
) )  .<  (
( invg `  W ) `  (
m  .x.  X )
) )
199 negdi 9687 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  CC  /\  1  e.  CC )  -> 
-u ( m  + 
1 )  =  (
-u m  +  -u
1 ) )
20068, 41, 199sylancl 662 . . . . . . . . . . . . . 14  |-  ( m  e.  NN0  ->  -u (
m  +  1 )  =  ( -u m  +  -u 1 ) )
201200oveq1d 6127 . . . . . . . . . . . . 13  |-  ( m  e.  NN0  ->  ( -u ( m  +  1
)  +  1 )  =  ( ( -u m  +  -u 1 )  +  1 ) )
20268negcld 9727 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN0  ->  -u m  e.  CC )
20397negcld 9727 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN0  ->  -u 1  e.  CC )
204202, 203, 97addassd 9429 . . . . . . . . . . . . . 14  |-  ( m  e.  NN0  ->  ( (
-u m  +  -u
1 )  +  1 )  =  ( -u m  +  ( -u 1  +  1 ) ) )
20544oveq2i 6123 . . . . . . . . . . . . . . 15  |-  ( -u m  +  ( -u 1  +  1 ) )  =  ( -u m  +  0 )
206205a1i 11 . . . . . . . . . . . . . 14  |-  ( m  e.  NN0  ->  ( -u m  +  ( -u 1  +  1 ) )  =  ( -u m  +  0 ) )
207202addid1d 9590 . . . . . . . . . . . . . 14  |-  ( m  e.  NN0  ->  ( -u m  +  0 )  =  -u m )
208204, 206, 2073eqtrd 2479 . . . . . . . . . . . . 13  |-  ( m  e.  NN0  ->  ( (
-u m  +  -u
1 )  +  1 )  =  -u m
)
209201, 208eqtrd 2475 . . . . . . . . . . . 12  |-  ( m  e.  NN0  ->  ( -u ( m  +  1
)  +  1 )  =  -u m )
210209oveq1d 6127 . . . . . . . . . . 11  |-  ( m  e.  NN0  ->  ( (
-u ( m  + 
1 )  +  1 )  .x.  X )  =  ( -u m  .x.  X ) )
21161, 210syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  (
( -u ( m  + 
1 )  +  1 )  .x.  X )  =  ( -u m  .x.  X ) )
2129, 10, 11mulgneg 15666 . . . . . . . . . . 11  |-  ( ( W  e.  Grp  /\  m  e.  ZZ  /\  X  e.  B )  ->  ( -u m  .x.  X )  =  ( ( invg `  W ) `
 ( m  .x.  X ) ) )
21379, 62, 82, 212syl3anc 1218 . . . . . . . . . 10  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  ( -u m  .x.  X )  =  ( ( invg `  W ) `
 ( m  .x.  X ) ) )
214211, 213eqtrd 2475 . . . . . . . . 9  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  (
( -u ( m  + 
1 )  +  1 )  .x.  X )  =  ( ( invg `  W ) `
 ( m  .x.  X ) ) )
215214ad2antrr 725 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( invg `  W ) `  Y
)  .<  ( ( m  +  1 )  .x.  X ) )  -> 
( ( -u (
m  +  1 )  +  1 )  .x.  X )  =  ( ( invg `  W ) `  (
m  .x.  X )
) )
216215eqcomd 2448 . . . . . . 7  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( invg `  W ) `  Y
)  .<  ( ( m  +  1 )  .x.  X ) )  -> 
( ( invg `  W ) `  (
m  .x.  X )
)  =  ( (
-u ( m  + 
1 )  +  1 )  .x.  X ) )
217198, 189, 2163brtr3d 4342 . . . . . 6  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( invg `  W ) `  Y
)  .<  ( ( m  +  1 )  .x.  X ) )  ->  Y  .<  ( ( -u ( m  +  1
)  +  1 ) 
.x.  X ) )
218 ovex 6137 . . . . . . . . 9  |-  ( (
-u ( m  + 
1 )  +  1 )  .x.  X )  e.  _V
219218a1i 11 . . . . . . . 8  |-  ( ph  ->  ( ( -u (
m  +  1 )  +  1 )  .x.  X )  e.  _V )
22035, 19pltle 15152 . . . . . . . 8  |-  ( ( W  e. oGrp  /\  Y  e.  B  /\  (
( -u ( m  + 
1 )  +  1 )  .x.  X )  e.  _V )  -> 
( Y  .<  (
( -u ( m  + 
1 )  +  1 )  .x.  X )  ->  Y  .<_  ( (
-u ( m  + 
1 )  +  1 )  .x.  X ) ) )
2212, 126, 219, 220syl3anc 1218 . . . . . . 7  |-  ( ph  ->  ( Y  .<  (
( -u ( m  + 
1 )  +  1 )  .x.  X )  ->  Y  .<_  ( (
-u ( m  + 
1 )  +  1 )  .x.  X ) ) )
222221imp 429 . . . . . 6  |-  ( (
ph  /\  Y  .<  ( ( -u ( m  +  1 )  +  1 )  .x.  X
) )  ->  Y  .<_  ( ( -u (
m  +  1 )  +  1 )  .x.  X ) )
223191, 217, 222syl2anc 661 . . . . 5  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( invg `  W ) `  Y
)  .<  ( ( m  +  1 )  .x.  X ) )  ->  Y  .<_  ( ( -u ( m  +  1
)  +  1 ) 
.x.  X ) )
224 oveq1 6119 . . . . . . . 8  |-  ( n  =  -u ( m  + 
1 )  ->  (
n  .x.  X )  =  ( -u (
m  +  1 ) 
.x.  X ) )
225224breq1d 4323 . . . . . . 7  |-  ( n  =  -u ( m  + 
1 )  ->  (
( n  .x.  X
)  .<  Y  <->  ( -u (
m  +  1 ) 
.x.  X )  .<  Y ) )
226 oveq1 6119 . . . . . . . . 9  |-  ( n  =  -u ( m  + 
1 )  ->  (
n  +  1 )  =  ( -u (
m  +  1 )  +  1 ) )
227226oveq1d 6127 . . . . . . . 8  |-  ( n  =  -u ( m  + 
1 )  ->  (
( n  +  1 )  .x.  X )  =  ( ( -u ( m  +  1
)  +  1 ) 
.x.  X ) )
228227breq2d 4325 . . . . . . 7  |-  ( n  =  -u ( m  + 
1 )  ->  ( Y  .<_  ( ( n  +  1 )  .x.  X )  <->  Y  .<_  ( ( -u ( m  +  1 )  +  1 )  .x.  X
) ) )
229225, 228anbi12d 710 . . . . . 6  |-  ( n  =  -u ( m  + 
1 )  ->  (
( ( n  .x.  X )  .<  Y  /\  Y  .<_  ( ( n  +  1 )  .x.  X ) )  <->  ( ( -u ( m  +  1 )  .x.  X ) 
.<  Y  /\  Y  .<_  ( ( -u ( m  +  1 )  +  1 )  .x.  X
) ) ) )
230229rspcev 3094 . . . . 5  |-  ( (
-u ( m  + 
1 )  e.  ZZ  /\  ( ( -u (
m  +  1 ) 
.x.  X )  .<  Y  /\  Y  .<_  ( (
-u ( m  + 
1 )  +  1 )  .x.  X ) ) )  ->  E. n  e.  ZZ  ( ( n 
.x.  X )  .<  Y  /\  Y  .<_  ( ( n  +  1 ) 
.x.  X ) ) )
231176, 190, 223, 230syl12anc 1216 . . . 4  |-  ( ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  /\  ( ( invg `  W ) `  Y
)  .<  ( ( m  +  1 )  .x.  X ) )  ->  E. n  e.  ZZ  ( ( n  .x.  X )  .<  Y  /\  Y  .<_  ( ( n  +  1 )  .x.  X ) ) )
2329, 35, 19tlt2 26147 . . . . . 6  |-  ( ( W  e. Toset  /\  (
( m  +  1 )  .x.  X )  e.  B  /\  (
( invg `  W ) `  Y
)  e.  B )  ->  ( ( ( m  +  1 ) 
.x.  X )  .<_  ( ( invg `  W ) `  Y
)  \/  ( ( invg `  W
) `  Y )  .<  ( ( m  + 
1 )  .x.  X
) ) )
233155, 84, 130, 232syl3anc 1218 . . . . 5  |-  ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  ->  (
( ( m  + 
1 )  .x.  X
)  .<_  ( ( invg `  W ) `
 Y )  \/  ( ( invg `  W ) `  Y
)  .<  ( ( m  +  1 )  .x.  X ) ) )
234233adantr 465 . . . 4  |-  ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m  .x.  X )  .<  (
( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  -> 
( ( ( m  +  1 )  .x.  X )  .<_  ( ( invg `  W
) `  Y )  \/  ( ( invg `  W ) `  Y
)  .<  ( ( m  +  1 )  .x.  X ) ) )
235174, 231, 234mpjaodan 784 . . 3  |-  ( ( ( ( ph  /\  Y  .<  .0.  )  /\  m  e.  NN0 )  /\  ( ( m  .x.  X )  .<  (
( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )  ->  E. n  e.  ZZ  ( ( n  .x.  X )  .<  Y  /\  Y  .<_  ( ( n  +  1 )  .x.  X ) ) )
236 archirng.2 . . . . 5  |-  ( ph  ->  W  e. Archi )
237236adantr 465 . . . 4  |-  ( (
ph  /\  Y  .<  .0.  )  ->  W  e. Archi )
238140breq1d 4323 . . . . . 6  |-  ( ph  ->  ( ( ( invg `  W ) `
 ( ( invg `  W ) `
 Y ) ) 
.<  .0.  <->  Y  .<  .0.  )
)
239238biimpar 485 . . . . 5  |-  ( (
ph  /\  Y  .<  .0.  )  ->  ( ( invg `  W ) `
 ( ( invg `  W ) `
 Y ) ) 
.<  .0.  )
2409, 19, 11, 20ogrpinv0lt 26208 . . . . . . 7  |-  ( ( W  e. oGrp  /\  (
( invg `  W ) `  Y
)  e.  B )  ->  (  .0.  .<  ( ( invg `  W ) `  Y
)  <->  ( ( invg `  W ) `
 ( ( invg `  W ) `
 Y ) ) 
.<  .0.  ) )
2412, 128, 240syl2anc 661 . . . . . 6  |-  ( ph  ->  (  .0.  .<  (
( invg `  W ) `  Y
)  <->  ( ( invg `  W ) `
 ( ( invg `  W ) `
 Y ) ) 
.<  .0.  ) )
242241biimpar 485 . . . . 5  |-  ( (
ph  /\  ( ( invg `  W ) `
 ( ( invg `  W ) `
 Y ) ) 
.<  .0.  )  ->  .0.  .< 
( ( invg `  W ) `  Y
) )
243239, 242syldan 470 . . . 4  |-  ( (
ph  /\  Y  .<  .0.  )  ->  .0.  .<  (
( invg `  W ) `  Y
) )
2449, 20, 19, 35, 10, 73, 237, 81, 129, 90, 243archirng 26227 . . 3  |-  ( (
ph  /\  Y  .<  .0.  )  ->  E. m  e.  NN0  ( ( m 
.x.  X )  .< 
( ( invg `  W ) `  Y
)  /\  ( ( invg `  W ) `
 Y )  .<_  ( ( m  + 
1 )  .x.  X
) ) )
245235, 244r19.29a 2883 . 2  |-  ( (
ph  /\  Y  .<  .0.  )  ->  E. n  e.  ZZ  ( ( n 
.x.  X )  .<  Y  /\  Y  .<_  ( ( n  +  1 ) 
.x.  X ) ) )
2462adantr 465 . . . 4  |-  ( (
ph  /\  .0.  .<  Y )  ->  W  e. oGrp )
247236adantr 465 . . . 4  |-  ( (
ph  /\  .0.  .<  Y )  ->  W  e. Archi )
2488adantr 465 . . . 4  |-  ( (
ph  /\  .0.  .<  Y )  ->  X  e.  B
)
249126adantr 465 . . . 4  |-  ( (
ph  /\  .0.  .<  Y )  ->  Y  e.  B
)
25018adantr 465 . . . 4  |-  ( (
ph  /\  .0.  .<  Y )  ->  .0.  .<  X )
251 simpr 461 . . . 4  |-  ( (
ph  /\  .0.  .<  Y )  ->  .0.  .<  Y )
2529, 20, 19, 35, 10, 246, 247, 248, 249, 250, 251archirng 26227 . . 3  |-  ( (
ph  /\  .0.  .<  Y )  ->  E. n  e.  NN0  ( ( n  .x.  X )  .<  Y  /\  Y  .<_  ( ( n  +  1 )  .x.  X ) ) )
253 ssrexv 3438 . . 3  |-  ( NN0  C_  ZZ  ->  ( E. n  e.  NN0  ( ( n  .x.  X ) 
.<  Y  /\  Y  .<_  ( ( n  +  1 )  .x.  X ) )  ->  E. n  e.  ZZ  ( ( n 
.x.  X )  .<  Y  /\  Y  .<_  ( ( n  +  1 ) 
.x.  X ) ) ) )
25460, 252, 253mpsyl 63 . 2  |-  ( (
ph  /\  .0.  .<  Y )  ->  E. n  e.  ZZ  ( ( n  .x.  X )  .<  Y  /\  Y  .<_  ( ( n  +  1 )  .x.  X ) ) )
2559, 19tlt3 26148 . . 3  |-  ( ( W  e. Toset  /\  Y  e.  B  /\  .0.  e.  B )  ->  ( Y  =  .0.  \/  Y  .<  .0.  \/  .0.  .<  Y ) )
25630, 126, 34, 255syl3anc 1218 . 2  |-  ( ph  ->  ( Y  =  .0. 
\/  Y  .<  .0.  \/  .0.  .<  Y ) )
25759, 245, 254, 256mpjao3dan 1285 1  |-  ( ph  ->  E. n  e.  ZZ  ( ( n  .x.  X )  .<  Y  /\  Y  .<_  ( ( n  +  1 )  .x.  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    \/ w3o 964    /\ w3a 965    = wceq 1369    e. wcel 1756   E.wrex 2737   _Vcvv 2993    C_ wss 3349   class class class wbr 4313   ` cfv 5439  (class class class)co 6112   CCcc 9301   0cc0 9303   1c1 9304    + caddc 9306    - cmin 9616   -ucneg 9617   2c2 10392   NN0cn0 10600   ZZcz 10667   Basecbs 14195   +g cplusg 14259   lecple 14266   0gc0g 14399   Posetcpo 15131   ltcplt 15132  Tosetctos 15224   Grpcgrp 15431   invgcminusg 15432  .gcmg 15435  oppgcoppg 15881  oMndcomnd 26182  oGrpcogrp 26183  Archicarchi 26216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-inf2 7868  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-1st 6598  df-2nd 6599  df-tpos 6766  df-recs 6853  df-rdg 6887  df-er 7122  df-en 7332  df-dom 7333  df-sdom 7334  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-nn 10344  df-2 10401  df-3 10402  df-4 10403  df-5 10404  df-6 10405  df-7 10406  df-8 10407  df-9 10408  df-10 10409  df-n0 10601  df-z 10668  df-uz 10883  df-fz 11459  df-seq 11828  df-ndx 14198  df-slot 14199  df-base 14200  df-sets 14201  df-plusg 14272  df-ple 14279  df-0g 14401  df-poset 15137  df-plt 15149  df-toset 15225  df-mnd 15436  df-grp 15566  df-minusg 15567  df-mulg 15569  df-oppg 15882  df-omnd 26184  df-ogrp 26185  df-inftm 26217  df-archi 26218
This theorem is referenced by:  archiabllem2c  26234
  Copyright terms: Public domain W3C validator