Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > archiexdiv | Structured version Visualization version GIF version |
Description: In an Archimedean group, given two positive elements, there exists a "divisor" 𝑛. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
Ref | Expression |
---|---|
archiexdiv.b | ⊢ 𝐵 = (Base‘𝑊) |
archiexdiv.0 | ⊢ 0 = (0g‘𝑊) |
archiexdiv.i | ⊢ < = (lt‘𝑊) |
archiexdiv.x | ⊢ · = (.g‘𝑊) |
Ref | Expression |
---|---|
archiexdiv | ⊢ (((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 0 < 𝑋) → ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | archiexdiv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
2 | archiexdiv.0 | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
3 | archiexdiv.i | . . . . 5 ⊢ < = (lt‘𝑊) | |
4 | archiexdiv.x | . . . . 5 ⊢ · = (.g‘𝑊) | |
5 | 1, 2, 3, 4 | isarchi3 29072 | . . . 4 ⊢ (𝑊 ∈ oGrp → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)))) |
6 | 5 | biimpa 500 | . . 3 ⊢ ((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))) |
7 | 6 | 3ad2ant1 1075 | . 2 ⊢ (((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 0 < 𝑋) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥))) |
8 | simp3 1056 | . 2 ⊢ (((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 0 < 𝑋) → 0 < 𝑋) | |
9 | breq2 4587 | . . . . 5 ⊢ (𝑥 = 𝑋 → ( 0 < 𝑥 ↔ 0 < 𝑋)) | |
10 | oveq2 6557 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑛 · 𝑥) = (𝑛 · 𝑋)) | |
11 | 10 | breq2d 4595 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑦 < (𝑛 · 𝑥) ↔ 𝑦 < (𝑛 · 𝑋))) |
12 | 11 | rexbidv 3034 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥) ↔ ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑋))) |
13 | 9, 12 | imbi12d 333 | . . . 4 ⊢ (𝑥 = 𝑋 → (( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)) ↔ ( 0 < 𝑋 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑋)))) |
14 | breq1 4586 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑦 < (𝑛 · 𝑋) ↔ 𝑌 < (𝑛 · 𝑋))) | |
15 | 14 | rexbidv 3034 | . . . . 5 ⊢ (𝑦 = 𝑌 → (∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑋) ↔ ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋))) |
16 | 15 | imbi2d 329 | . . . 4 ⊢ (𝑦 = 𝑌 → (( 0 < 𝑋 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑋)) ↔ ( 0 < 𝑋 → ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋)))) |
17 | 13, 16 | rspc2v 3293 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)) → ( 0 < 𝑋 → ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋)))) |
18 | 17 | 3ad2ant2 1076 | . 2 ⊢ (((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 0 < 𝑋) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)) → ( 0 < 𝑋 → ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋)))) |
19 | 7, 8, 18 | mp2d 47 | 1 ⊢ (((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 0 < 𝑋) → ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ∃wrex 2897 class class class wbr 4583 ‘cfv 5804 (class class class)co 6549 ℕcn 10897 Basecbs 15695 0gc0g 15923 ltcplt 16764 .gcmg 17363 oGrpcogrp 29029 Archicarchi 29062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-seq 12664 df-0g 15925 df-preset 16751 df-poset 16769 df-plt 16781 df-toset 16857 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-grp 17248 df-minusg 17249 df-mulg 17364 df-omnd 29030 df-ogrp 29031 df-inftm 29063 df-archi 29064 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |