Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tospos Structured version   Visualization version   GIF version

Theorem tospos 28989
 Description: A Toset is a Poset. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Assertion
Ref Expression
tospos (𝐹 ∈ Toset → 𝐹 ∈ Poset)

Proof of Theorem tospos
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . 3 (Base‘𝐹) = (Base‘𝐹)
2 eqid 2610 . . 3 (le‘𝐹) = (le‘𝐹)
31, 2istos 16858 . 2 (𝐹 ∈ Toset ↔ (𝐹 ∈ Poset ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥)))
43simplbi 475 1 (𝐹 ∈ Toset → 𝐹 ∈ Poset)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   ∈ wcel 1977  ∀wral 2896   class class class wbr 4583  ‘cfv 5804  Basecbs 15695  lecple 15775  Posetcpo 16763  Tosetctos 16856 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-nul 4717 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-toset 16857 This theorem is referenced by:  resstos  28991  tltnle  28993  odutos  28994  tlt3  28996  xrsclat  29011  omndadd2d  29039  omndadd2rd  29040  omndmul2  29043  omndmul  29045  isarchi3  29072  archirngz  29074  archiabllem1a  29076  archiabllem2c  29080  gsumle  29110  orngsqr  29135  ofldchr  29145  ordtrest2NEWlem  29296  ordtrest2NEW  29297  ordtconlem1  29298
 Copyright terms: Public domain W3C validator