MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgval Structured version   Visualization version   GIF version

Theorem mulgval 17366
Description: Value of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgval.b 𝐵 = (Base‘𝐺)
mulgval.p + = (+g𝐺)
mulgval.o 0 = (0g𝐺)
mulgval.i 𝐼 = (invg𝐺)
mulgval.t · = (.g𝐺)
mulgval.s 𝑆 = seq1( + , (ℕ × {𝑋}))
Assertion
Ref Expression
mulgval ((𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁)))))

Proof of Theorem mulgval
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 472 . . . 4 ((𝑛 = 𝑁𝑥 = 𝑋) → 𝑛 = 𝑁)
21eqeq1d 2612 . . 3 ((𝑛 = 𝑁𝑥 = 𝑋) → (𝑛 = 0 ↔ 𝑁 = 0))
31breq2d 4595 . . . 4 ((𝑛 = 𝑁𝑥 = 𝑋) → (0 < 𝑛 ↔ 0 < 𝑁))
4 simpr 476 . . . . . . . . 9 ((𝑛 = 𝑁𝑥 = 𝑋) → 𝑥 = 𝑋)
54sneqd 4137 . . . . . . . 8 ((𝑛 = 𝑁𝑥 = 𝑋) → {𝑥} = {𝑋})
65xpeq2d 5063 . . . . . . 7 ((𝑛 = 𝑁𝑥 = 𝑋) → (ℕ × {𝑥}) = (ℕ × {𝑋}))
76seqeq3d 12671 . . . . . 6 ((𝑛 = 𝑁𝑥 = 𝑋) → seq1( + , (ℕ × {𝑥})) = seq1( + , (ℕ × {𝑋})))
8 mulgval.s . . . . . 6 𝑆 = seq1( + , (ℕ × {𝑋}))
97, 8syl6eqr 2662 . . . . 5 ((𝑛 = 𝑁𝑥 = 𝑋) → seq1( + , (ℕ × {𝑥})) = 𝑆)
109, 1fveq12d 6109 . . . 4 ((𝑛 = 𝑁𝑥 = 𝑋) → (seq1( + , (ℕ × {𝑥}))‘𝑛) = (𝑆𝑁))
111negeqd 10154 . . . . . 6 ((𝑛 = 𝑁𝑥 = 𝑋) → -𝑛 = -𝑁)
129, 11fveq12d 6109 . . . . 5 ((𝑛 = 𝑁𝑥 = 𝑋) → (seq1( + , (ℕ × {𝑥}))‘-𝑛) = (𝑆‘-𝑁))
1312fveq2d 6107 . . . 4 ((𝑛 = 𝑁𝑥 = 𝑋) → (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)) = (𝐼‘(𝑆‘-𝑁)))
143, 10, 13ifbieq12d 4063 . . 3 ((𝑛 = 𝑁𝑥 = 𝑋) → if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))) = if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁))))
152, 14ifbieq2d 4061 . 2 ((𝑛 = 𝑁𝑥 = 𝑋) → if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁)))))
16 mulgval.b . . 3 𝐵 = (Base‘𝐺)
17 mulgval.p . . 3 + = (+g𝐺)
18 mulgval.o . . 3 0 = (0g𝐺)
19 mulgval.i . . 3 𝐼 = (invg𝐺)
20 mulgval.t . . 3 · = (.g𝐺)
2116, 17, 18, 19, 20mulgfval 17365 . 2 · = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))
22 fvex 6113 . . . 4 (0g𝐺) ∈ V
2318, 22eqeltri 2684 . . 3 0 ∈ V
24 fvex 6113 . . . 4 (𝑆𝑁) ∈ V
25 fvex 6113 . . . 4 (𝐼‘(𝑆‘-𝑁)) ∈ V
2624, 25ifex 4106 . . 3 if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁))) ∈ V
2723, 26ifex 4106 . 2 if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁)))) ∈ V
2815, 21, 27ovmpt2a 6689 1 ((𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  ifcif 4036  {csn 4125   class class class wbr 4583   × cxp 5036  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   < clt 9953  -cneg 10146  cn 10897  cz 11254  seqcseq 12663  Basecbs 15695  +gcplusg 15768  0gc0g 15923  invgcminusg 17246  .gcmg 17363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-neg 10148  df-z 11255  df-seq 12664  df-mulg 17364
This theorem is referenced by:  mulg0  17369  mulgnn  17370  mulgnegnn  17374  subgmulg  17431
  Copyright terms: Public domain W3C validator