Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmodvsmdi Structured version   Visualization version   GIF version

Theorem lmodvsmdi 41957
Description: Multiple distributive law for scalar product (left-distributivity). (Contributed by AV, 5-Sep-2019.)
Hypotheses
Ref Expression
lmodvsmdi.v 𝑉 = (Base‘𝑊)
lmodvsmdi.f 𝐹 = (Scalar‘𝑊)
lmodvsmdi.s · = ( ·𝑠𝑊)
lmodvsmdi.k 𝐾 = (Base‘𝐹)
lmodvsmdi.p = (.g𝑊)
lmodvsmdi.e 𝐸 = (.g𝐹)
Assertion
Ref Expression
lmodvsmdi ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑁 ∈ ℕ0𝑋𝑉)) → (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋))

Proof of Theorem lmodvsmdi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6556 . . . . . . . . 9 (𝑥 = 0 → (𝑥 𝑋) = (0 𝑋))
21oveq2d 6565 . . . . . . . 8 (𝑥 = 0 → (𝑅 · (𝑥 𝑋)) = (𝑅 · (0 𝑋)))
3 oveq1 6556 . . . . . . . . 9 (𝑥 = 0 → (𝑥𝐸𝑅) = (0𝐸𝑅))
43oveq1d 6564 . . . . . . . 8 (𝑥 = 0 → ((𝑥𝐸𝑅) · 𝑋) = ((0𝐸𝑅) · 𝑋))
52, 4eqeq12d 2625 . . . . . . 7 (𝑥 = 0 → ((𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋) ↔ (𝑅 · (0 𝑋)) = ((0𝐸𝑅) · 𝑋)))
65imbi2d 329 . . . . . 6 (𝑥 = 0 → ((((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋)) ↔ (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (0 𝑋)) = ((0𝐸𝑅) · 𝑋))))
7 oveq1 6556 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 𝑋) = (𝑦 𝑋))
87oveq2d 6565 . . . . . . . 8 (𝑥 = 𝑦 → (𝑅 · (𝑥 𝑋)) = (𝑅 · (𝑦 𝑋)))
9 oveq1 6556 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐸𝑅) = (𝑦𝐸𝑅))
109oveq1d 6564 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥𝐸𝑅) · 𝑋) = ((𝑦𝐸𝑅) · 𝑋))
118, 10eqeq12d 2625 . . . . . . 7 (𝑥 = 𝑦 → ((𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋) ↔ (𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋)))
1211imbi2d 329 . . . . . 6 (𝑥 = 𝑦 → ((((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋)) ↔ (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋))))
13 oveq1 6556 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝑥 𝑋) = ((𝑦 + 1) 𝑋))
1413oveq2d 6565 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑅 · (𝑥 𝑋)) = (𝑅 · ((𝑦 + 1) 𝑋)))
15 oveq1 6556 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝑥𝐸𝑅) = ((𝑦 + 1)𝐸𝑅))
1615oveq1d 6564 . . . . . . . 8 (𝑥 = (𝑦 + 1) → ((𝑥𝐸𝑅) · 𝑋) = (((𝑦 + 1)𝐸𝑅) · 𝑋))
1714, 16eqeq12d 2625 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋) ↔ (𝑅 · ((𝑦 + 1) 𝑋)) = (((𝑦 + 1)𝐸𝑅) · 𝑋)))
1817imbi2d 329 . . . . . 6 (𝑥 = (𝑦 + 1) → ((((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋)) ↔ (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · ((𝑦 + 1) 𝑋)) = (((𝑦 + 1)𝐸𝑅) · 𝑋))))
19 oveq1 6556 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥 𝑋) = (𝑁 𝑋))
2019oveq2d 6565 . . . . . . . 8 (𝑥 = 𝑁 → (𝑅 · (𝑥 𝑋)) = (𝑅 · (𝑁 𝑋)))
21 oveq1 6556 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥𝐸𝑅) = (𝑁𝐸𝑅))
2221oveq1d 6564 . . . . . . . 8 (𝑥 = 𝑁 → ((𝑥𝐸𝑅) · 𝑋) = ((𝑁𝐸𝑅) · 𝑋))
2320, 22eqeq12d 2625 . . . . . . 7 (𝑥 = 𝑁 → ((𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋) ↔ (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋)))
2423imbi2d 329 . . . . . 6 (𝑥 = 𝑁 → ((((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋)) ↔ (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋))))
25 simpr 476 . . . . . . . . . 10 ((𝑅𝐾𝑋𝑉) → 𝑋𝑉)
2625adantr 480 . . . . . . . . 9 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → 𝑋𝑉)
27 lmodvsmdi.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
28 eqid 2610 . . . . . . . . . 10 (0g𝑊) = (0g𝑊)
29 lmodvsmdi.p . . . . . . . . . 10 = (.g𝑊)
3027, 28, 29mulg0 17369 . . . . . . . . 9 (𝑋𝑉 → (0 𝑋) = (0g𝑊))
3126, 30syl 17 . . . . . . . 8 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (0 𝑋) = (0g𝑊))
3231oveq2d 6565 . . . . . . 7 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (0 𝑋)) = (𝑅 · (0g𝑊)))
33 simpl 472 . . . . . . . . . . 11 ((𝑅𝐾𝑋𝑉) → 𝑅𝐾)
3433anim1i 590 . . . . . . . . . 10 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅𝐾𝑊 ∈ LMod))
3534ancomd 466 . . . . . . . . 9 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑊 ∈ LMod ∧ 𝑅𝐾))
36 lmodvsmdi.f . . . . . . . . . 10 𝐹 = (Scalar‘𝑊)
37 lmodvsmdi.s . . . . . . . . . 10 · = ( ·𝑠𝑊)
38 lmodvsmdi.k . . . . . . . . . 10 𝐾 = (Base‘𝐹)
3936, 37, 38, 28lmodvs0 18720 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑅𝐾) → (𝑅 · (0g𝑊)) = (0g𝑊))
4035, 39syl 17 . . . . . . . 8 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (0g𝑊)) = (0g𝑊))
4125anim1i 590 . . . . . . . . . 10 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑋𝑉𝑊 ∈ LMod))
4241ancomd 466 . . . . . . . . 9 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑊 ∈ LMod ∧ 𝑋𝑉))
43 eqid 2610 . . . . . . . . . 10 (0g𝐹) = (0g𝐹)
4427, 36, 37, 43, 28lmod0vs 18719 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((0g𝐹) · 𝑋) = (0g𝑊))
4542, 44syl 17 . . . . . . . 8 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((0g𝐹) · 𝑋) = (0g𝑊))
4633adantr 480 . . . . . . . . . 10 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → 𝑅𝐾)
47 lmodvsmdi.e . . . . . . . . . . . 12 𝐸 = (.g𝐹)
4838, 43, 47mulg0 17369 . . . . . . . . . . 11 (𝑅𝐾 → (0𝐸𝑅) = (0g𝐹))
4948eqcomd 2616 . . . . . . . . . 10 (𝑅𝐾 → (0g𝐹) = (0𝐸𝑅))
5046, 49syl 17 . . . . . . . . 9 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (0g𝐹) = (0𝐸𝑅))
5150oveq1d 6564 . . . . . . . 8 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((0g𝐹) · 𝑋) = ((0𝐸𝑅) · 𝑋))
5240, 45, 513eqtr2d 2650 . . . . . . 7 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (0g𝑊)) = ((0𝐸𝑅) · 𝑋))
5332, 52eqtrd 2644 . . . . . 6 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (0 𝑋)) = ((0𝐸𝑅) · 𝑋))
54 lmodgrp 18693 . . . . . . . . . . . . . . 15 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
55 grpmnd 17252 . . . . . . . . . . . . . . 15 (𝑊 ∈ Grp → 𝑊 ∈ Mnd)
5654, 55syl 17 . . . . . . . . . . . . . 14 (𝑊 ∈ LMod → 𝑊 ∈ Mnd)
5756ad2antll 761 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑊 ∈ Mnd)
58 simpl 472 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑦 ∈ ℕ0)
5926adantl 481 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑋𝑉)
60 eqid 2610 . . . . . . . . . . . . . 14 (+g𝑊) = (+g𝑊)
6127, 29, 60mulgnn0p1 17375 . . . . . . . . . . . . 13 ((𝑊 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝑉) → ((𝑦 + 1) 𝑋) = ((𝑦 𝑋)(+g𝑊)𝑋))
6257, 58, 59, 61syl3anc 1318 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → ((𝑦 + 1) 𝑋) = ((𝑦 𝑋)(+g𝑊)𝑋))
6362oveq2d 6565 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (𝑅 · ((𝑦 + 1) 𝑋)) = (𝑅 · ((𝑦 𝑋)(+g𝑊)𝑋)))
64 simpr 476 . . . . . . . . . . . . 13 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → 𝑊 ∈ LMod)
6564adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑊 ∈ LMod)
66 simprll 798 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑅𝐾)
6727, 29mulgnn0cl 17381 . . . . . . . . . . . . 13 ((𝑊 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝑉) → (𝑦 𝑋) ∈ 𝑉)
6857, 58, 59, 67syl3anc 1318 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (𝑦 𝑋) ∈ 𝑉)
6927, 60, 36, 37, 38lmodvsdi 18709 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (𝑅𝐾 ∧ (𝑦 𝑋) ∈ 𝑉𝑋𝑉)) → (𝑅 · ((𝑦 𝑋)(+g𝑊)𝑋)) = ((𝑅 · (𝑦 𝑋))(+g𝑊)(𝑅 · 𝑋)))
7065, 66, 68, 59, 69syl13anc 1320 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (𝑅 · ((𝑦 𝑋)(+g𝑊)𝑋)) = ((𝑅 · (𝑦 𝑋))(+g𝑊)(𝑅 · 𝑋)))
7163, 70eqtrd 2644 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (𝑅 · ((𝑦 + 1) 𝑋)) = ((𝑅 · (𝑦 𝑋))(+g𝑊)(𝑅 · 𝑋)))
72 oveq1 6556 . . . . . . . . . 10 ((𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋) → ((𝑅 · (𝑦 𝑋))(+g𝑊)(𝑅 · 𝑋)) = (((𝑦𝐸𝑅) · 𝑋)(+g𝑊)(𝑅 · 𝑋)))
7371, 72sylan9eq 2664 . . . . . . . . 9 (((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) ∧ (𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋)) → (𝑅 · ((𝑦 + 1) 𝑋)) = (((𝑦𝐸𝑅) · 𝑋)(+g𝑊)(𝑅 · 𝑋)))
7436lmodfgrp 18695 . . . . . . . . . . . . . . 15 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
75 grpmnd 17252 . . . . . . . . . . . . . . 15 (𝐹 ∈ Grp → 𝐹 ∈ Mnd)
7674, 75syl 17 . . . . . . . . . . . . . 14 (𝑊 ∈ LMod → 𝐹 ∈ Mnd)
7776ad2antll 761 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝐹 ∈ Mnd)
7838, 47mulgnn0cl 17381 . . . . . . . . . . . . 13 ((𝐹 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑅𝐾) → (𝑦𝐸𝑅) ∈ 𝐾)
7977, 58, 66, 78syl3anc 1318 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (𝑦𝐸𝑅) ∈ 𝐾)
80 eqid 2610 . . . . . . . . . . . . 13 (+g𝐹) = (+g𝐹)
8127, 60, 36, 37, 38, 80lmodvsdir 18710 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ ((𝑦𝐸𝑅) ∈ 𝐾𝑅𝐾𝑋𝑉)) → (((𝑦𝐸𝑅)(+g𝐹)𝑅) · 𝑋) = (((𝑦𝐸𝑅) · 𝑋)(+g𝑊)(𝑅 · 𝑋)))
8265, 79, 66, 59, 81syl13anc 1320 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (((𝑦𝐸𝑅)(+g𝐹)𝑅) · 𝑋) = (((𝑦𝐸𝑅) · 𝑋)(+g𝑊)(𝑅 · 𝑋)))
8338, 47, 80mulgnn0p1 17375 . . . . . . . . . . . . . 14 ((𝐹 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑅𝐾) → ((𝑦 + 1)𝐸𝑅) = ((𝑦𝐸𝑅)(+g𝐹)𝑅))
8477, 58, 66, 83syl3anc 1318 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → ((𝑦 + 1)𝐸𝑅) = ((𝑦𝐸𝑅)(+g𝐹)𝑅))
8584eqcomd 2616 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → ((𝑦𝐸𝑅)(+g𝐹)𝑅) = ((𝑦 + 1)𝐸𝑅))
8685oveq1d 6564 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (((𝑦𝐸𝑅)(+g𝐹)𝑅) · 𝑋) = (((𝑦 + 1)𝐸𝑅) · 𝑋))
8782, 86eqtr3d 2646 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (((𝑦𝐸𝑅) · 𝑋)(+g𝑊)(𝑅 · 𝑋)) = (((𝑦 + 1)𝐸𝑅) · 𝑋))
8887adantr 480 . . . . . . . . 9 (((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) ∧ (𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋)) → (((𝑦𝐸𝑅) · 𝑋)(+g𝑊)(𝑅 · 𝑋)) = (((𝑦 + 1)𝐸𝑅) · 𝑋))
8973, 88eqtrd 2644 . . . . . . . 8 (((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) ∧ (𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋)) → (𝑅 · ((𝑦 + 1) 𝑋)) = (((𝑦 + 1)𝐸𝑅) · 𝑋))
9089exp31 628 . . . . . . 7 (𝑦 ∈ ℕ0 → (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋) → (𝑅 · ((𝑦 + 1) 𝑋)) = (((𝑦 + 1)𝐸𝑅) · 𝑋))))
9190a2d 29 . . . . . 6 (𝑦 ∈ ℕ0 → ((((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋)) → (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · ((𝑦 + 1) 𝑋)) = (((𝑦 + 1)𝐸𝑅) · 𝑋))))
926, 12, 18, 24, 53, 91nn0ind 11348 . . . . 5 (𝑁 ∈ ℕ0 → (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋)))
9392exp4c 634 . . . 4 (𝑁 ∈ ℕ0 → (𝑅𝐾 → (𝑋𝑉 → (𝑊 ∈ LMod → (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋)))))
9493com12 32 . . 3 (𝑅𝐾 → (𝑁 ∈ ℕ0 → (𝑋𝑉 → (𝑊 ∈ LMod → (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋)))))
95943imp 1249 . 2 ((𝑅𝐾𝑁 ∈ ℕ0𝑋𝑉) → (𝑊 ∈ LMod → (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋)))
9695impcom 445 1 ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑁 ∈ ℕ0𝑋𝑉)) → (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   + caddc 9818  0cn0 11169  Basecbs 15695  +gcplusg 15768  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923  Mndcmnd 17117  Grpcgrp 17245  .gcmg 17363  LModclmod 18686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-seq 12664  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-mulg 17364  df-mgp 18313  df-ring 18372  df-lmod 18688
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator