MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnunilem2 Structured version   Visualization version   GIF version

Theorem psgnunilem2 17738
Description: Lemma for psgnuni 17742. Induction step for moving a transposition as far to the right as possible. (Contributed by Stefan O'Rear, 24-Aug-2015.) (Revised by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
psgnunilem2.g 𝐺 = (SymGrp‘𝐷)
psgnunilem2.t 𝑇 = ran (pmTrsp‘𝐷)
psgnunilem2.d (𝜑𝐷𝑉)
psgnunilem2.w (𝜑𝑊 ∈ Word 𝑇)
psgnunilem2.id (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
psgnunilem2.l (𝜑 → (#‘𝑊) = 𝐿)
psgnunilem2.ix (𝜑𝐼 ∈ (0..^𝐿))
psgnunilem2.a (𝜑𝐴 ∈ dom ((𝑊𝐼) ∖ I ))
psgnunilem2.al (𝜑 → ∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ))
psgnunilem2.in (𝜑 → ¬ ∃𝑥 ∈ Word 𝑇((#‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
Assertion
Ref Expression
psgnunilem2 (𝜑 → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I ))))
Distinct variable groups:   𝑗,𝑘,𝑤,𝐴   𝑥,𝑗,𝐷,𝑤   𝜑,𝑗   𝑗,𝐺   𝑥,𝑘,𝐺,𝑤   𝑗,𝐼,𝑘,𝑤,𝑥   𝑇,𝑗,𝑤,𝑥   𝑗,𝑊,𝑘,𝑤,𝑥   𝑤,𝐿,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑘)   𝐴(𝑥)   𝐷(𝑘)   𝑇(𝑘)   𝐿(𝑗,𝑘)   𝑉(𝑥,𝑤,𝑗,𝑘)

Proof of Theorem psgnunilem2
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgnunilem2.w . . . . . . 7 (𝜑𝑊 ∈ Word 𝑇)
2 wrd0 13185 . . . . . . 7 ∅ ∈ Word 𝑇
3 splcl 13354 . . . . . . 7 ((𝑊 ∈ Word 𝑇 ∧ ∅ ∈ Word 𝑇) → (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩) ∈ Word 𝑇)
41, 2, 3sylancl 693 . . . . . 6 (𝜑 → (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩) ∈ Word 𝑇)
54adantr 480 . . . . 5 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩) ∈ Word 𝑇)
6 fzossfz 12357 . . . . . . . . . . 11 (0..^𝐿) ⊆ (0...𝐿)
7 psgnunilem2.ix . . . . . . . . . . 11 (𝜑𝐼 ∈ (0..^𝐿))
86, 7sseldi 3566 . . . . . . . . . 10 (𝜑𝐼 ∈ (0...𝐿))
9 elfznn0 12302 . . . . . . . . . 10 (𝐼 ∈ (0...𝐿) → 𝐼 ∈ ℕ0)
108, 9syl 17 . . . . . . . . 9 (𝜑𝐼 ∈ ℕ0)
11 2nn0 11186 . . . . . . . . . 10 2 ∈ ℕ0
12 nn0addcl 11205 . . . . . . . . . 10 ((𝐼 ∈ ℕ0 ∧ 2 ∈ ℕ0) → (𝐼 + 2) ∈ ℕ0)
1310, 11, 12sylancl 693 . . . . . . . . 9 (𝜑 → (𝐼 + 2) ∈ ℕ0)
1410nn0red 11229 . . . . . . . . . 10 (𝜑𝐼 ∈ ℝ)
15 nn0addge1 11216 . . . . . . . . . 10 ((𝐼 ∈ ℝ ∧ 2 ∈ ℕ0) → 𝐼 ≤ (𝐼 + 2))
1614, 11, 15sylancl 693 . . . . . . . . 9 (𝜑𝐼 ≤ (𝐼 + 2))
17 elfz2nn0 12300 . . . . . . . . 9 (𝐼 ∈ (0...(𝐼 + 2)) ↔ (𝐼 ∈ ℕ0 ∧ (𝐼 + 2) ∈ ℕ0𝐼 ≤ (𝐼 + 2)))
1810, 13, 16, 17syl3anbrc 1239 . . . . . . . 8 (𝜑𝐼 ∈ (0...(𝐼 + 2)))
19 psgnunilem2.g . . . . . . . . . . 11 𝐺 = (SymGrp‘𝐷)
20 psgnunilem2.t . . . . . . . . . . 11 𝑇 = ran (pmTrsp‘𝐷)
21 psgnunilem2.d . . . . . . . . . . 11 (𝜑𝐷𝑉)
22 psgnunilem2.id . . . . . . . . . . 11 (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
23 psgnunilem2.l . . . . . . . . . . 11 (𝜑 → (#‘𝑊) = 𝐿)
24 psgnunilem2.a . . . . . . . . . . 11 (𝜑𝐴 ∈ dom ((𝑊𝐼) ∖ I ))
25 psgnunilem2.al . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ))
2619, 20, 21, 1, 22, 23, 7, 24, 25psgnunilem5 17737 . . . . . . . . . 10 (𝜑 → (𝐼 + 1) ∈ (0..^𝐿))
27 fzofzp1 12431 . . . . . . . . . 10 ((𝐼 + 1) ∈ (0..^𝐿) → ((𝐼 + 1) + 1) ∈ (0...𝐿))
2826, 27syl 17 . . . . . . . . 9 (𝜑 → ((𝐼 + 1) + 1) ∈ (0...𝐿))
2910nn0cnd 11230 . . . . . . . . . . 11 (𝜑𝐼 ∈ ℂ)
30 1cnd 9935 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
3129, 30, 30addassd 9941 . . . . . . . . . 10 (𝜑 → ((𝐼 + 1) + 1) = (𝐼 + (1 + 1)))
32 df-2 10956 . . . . . . . . . . 11 2 = (1 + 1)
3332oveq2i 6560 . . . . . . . . . 10 (𝐼 + 2) = (𝐼 + (1 + 1))
3431, 33syl6reqr 2663 . . . . . . . . 9 (𝜑 → (𝐼 + 2) = ((𝐼 + 1) + 1))
3523oveq2d 6565 . . . . . . . . 9 (𝜑 → (0...(#‘𝑊)) = (0...𝐿))
3628, 34, 353eltr4d 2703 . . . . . . . 8 (𝜑 → (𝐼 + 2) ∈ (0...(#‘𝑊)))
372a1i 11 . . . . . . . 8 (𝜑 → ∅ ∈ Word 𝑇)
381, 18, 36, 37spllen 13356 . . . . . . 7 (𝜑 → (#‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)) = ((#‘𝑊) + ((#‘∅) − ((𝐼 + 2) − 𝐼))))
39 hash0 13019 . . . . . . . . . . 11 (#‘∅) = 0
4039oveq1i 6559 . . . . . . . . . 10 ((#‘∅) − ((𝐼 + 2) − 𝐼)) = (0 − ((𝐼 + 2) − 𝐼))
41 df-neg 10148 . . . . . . . . . 10 -((𝐼 + 2) − 𝐼) = (0 − ((𝐼 + 2) − 𝐼))
4240, 41eqtr4i 2635 . . . . . . . . 9 ((#‘∅) − ((𝐼 + 2) − 𝐼)) = -((𝐼 + 2) − 𝐼)
43 2cn 10968 . . . . . . . . . . 11 2 ∈ ℂ
44 pncan2 10167 . . . . . . . . . . 11 ((𝐼 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝐼 + 2) − 𝐼) = 2)
4529, 43, 44sylancl 693 . . . . . . . . . 10 (𝜑 → ((𝐼 + 2) − 𝐼) = 2)
4645negeqd 10154 . . . . . . . . 9 (𝜑 → -((𝐼 + 2) − 𝐼) = -2)
4742, 46syl5eq 2656 . . . . . . . 8 (𝜑 → ((#‘∅) − ((𝐼 + 2) − 𝐼)) = -2)
4823, 47oveq12d 6567 . . . . . . 7 (𝜑 → ((#‘𝑊) + ((#‘∅) − ((𝐼 + 2) − 𝐼))) = (𝐿 + -2))
49 elfzel2 12211 . . . . . . . . . 10 (𝐼 ∈ (0...𝐿) → 𝐿 ∈ ℤ)
508, 49syl 17 . . . . . . . . 9 (𝜑𝐿 ∈ ℤ)
5150zcnd 11359 . . . . . . . 8 (𝜑𝐿 ∈ ℂ)
52 negsub 10208 . . . . . . . 8 ((𝐿 ∈ ℂ ∧ 2 ∈ ℂ) → (𝐿 + -2) = (𝐿 − 2))
5351, 43, 52sylancl 693 . . . . . . 7 (𝜑 → (𝐿 + -2) = (𝐿 − 2))
5438, 48, 533eqtrd 2648 . . . . . 6 (𝜑 → (#‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)) = (𝐿 − 2))
5554adantr 480 . . . . 5 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → (#‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)) = (𝐿 − 2))
56 splid 13355 . . . . . . . . 9 ((𝑊 ∈ Word 𝑇 ∧ (𝐼 ∈ (0...(𝐼 + 2)) ∧ (𝐼 + 2) ∈ (0...(#‘𝑊)))) → (𝑊 splice ⟨𝐼, (𝐼 + 2), (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)⟩) = 𝑊)
571, 18, 36, 56syl12anc 1316 . . . . . . . 8 (𝜑 → (𝑊 splice ⟨𝐼, (𝐼 + 2), (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)⟩) = 𝑊)
5857oveq2d 6565 . . . . . . 7 (𝜑 → (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)⟩)) = (𝐺 Σg 𝑊))
5958adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)⟩)) = (𝐺 Σg 𝑊))
60 eqid 2610 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
6119symggrp 17643 . . . . . . . . . 10 (𝐷𝑉𝐺 ∈ Grp)
6221, 61syl 17 . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
63 grpmnd 17252 . . . . . . . . 9 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
6462, 63syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
6564adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → 𝐺 ∈ Mnd)
6620, 19, 60symgtrf 17712 . . . . . . . . . 10 𝑇 ⊆ (Base‘𝐺)
67 sswrd 13168 . . . . . . . . . 10 (𝑇 ⊆ (Base‘𝐺) → Word 𝑇 ⊆ Word (Base‘𝐺))
6866, 67ax-mp 5 . . . . . . . . 9 Word 𝑇 ⊆ Word (Base‘𝐺)
6968, 1sseldi 3566 . . . . . . . 8 (𝜑𝑊 ∈ Word (Base‘𝐺))
7069adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → 𝑊 ∈ Word (Base‘𝐺))
7118adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → 𝐼 ∈ (0...(𝐼 + 2)))
7236adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → (𝐼 + 2) ∈ (0...(#‘𝑊)))
73 swrdcl 13271 . . . . . . . . 9 (𝑊 ∈ Word (Base‘𝐺) → (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩) ∈ Word (Base‘𝐺))
7469, 73syl 17 . . . . . . . 8 (𝜑 → (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩) ∈ Word (Base‘𝐺))
7574adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩) ∈ Word (Base‘𝐺))
76 wrd0 13185 . . . . . . . 8 ∅ ∈ Word (Base‘𝐺)
7776a1i 11 . . . . . . 7 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → ∅ ∈ Word (Base‘𝐺))
7823oveq2d 6565 . . . . . . . . . . . . 13 (𝜑 → (0..^(#‘𝑊)) = (0..^𝐿))
7926, 78eleqtrrd 2691 . . . . . . . . . . . 12 (𝜑 → (𝐼 + 1) ∈ (0..^(#‘𝑊)))
80 swrds2 13533 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑇𝐼 ∈ ℕ0 ∧ (𝐼 + 1) ∈ (0..^(#‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩) = ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩)
811, 10, 79, 80syl3anc 1318 . . . . . . . . . . 11 (𝜑 → (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩) = ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩)
8281oveq2d 6565 . . . . . . . . . 10 (𝜑 → (𝐺 Σg (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)) = (𝐺 Σg ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩))
83 wrdf 13165 . . . . . . . . . . . . . . 15 (𝑊 ∈ Word 𝑇𝑊:(0..^(#‘𝑊))⟶𝑇)
841, 83syl 17 . . . . . . . . . . . . . 14 (𝜑𝑊:(0..^(#‘𝑊))⟶𝑇)
8578feq2d 5944 . . . . . . . . . . . . . 14 (𝜑 → (𝑊:(0..^(#‘𝑊))⟶𝑇𝑊:(0..^𝐿)⟶𝑇))
8684, 85mpbid 221 . . . . . . . . . . . . 13 (𝜑𝑊:(0..^𝐿)⟶𝑇)
8786, 7ffvelrnd 6268 . . . . . . . . . . . 12 (𝜑 → (𝑊𝐼) ∈ 𝑇)
8866, 87sseldi 3566 . . . . . . . . . . 11 (𝜑 → (𝑊𝐼) ∈ (Base‘𝐺))
8986, 26ffvelrnd 6268 . . . . . . . . . . . 12 (𝜑 → (𝑊‘(𝐼 + 1)) ∈ 𝑇)
9066, 89sseldi 3566 . . . . . . . . . . 11 (𝜑 → (𝑊‘(𝐼 + 1)) ∈ (Base‘𝐺))
91 eqid 2610 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
9260, 91gsumws2 17202 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ (𝑊𝐼) ∈ (Base‘𝐺) ∧ (𝑊‘(𝐼 + 1)) ∈ (Base‘𝐺)) → (𝐺 Σg ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩) = ((𝑊𝐼)(+g𝐺)(𝑊‘(𝐼 + 1))))
9364, 88, 90, 92syl3anc 1318 . . . . . . . . . 10 (𝜑 → (𝐺 Σg ⟨“(𝑊𝐼)(𝑊‘(𝐼 + 1))”⟩) = ((𝑊𝐼)(+g𝐺)(𝑊‘(𝐼 + 1))))
9419, 60, 91symgov 17633 . . . . . . . . . . 11 (((𝑊𝐼) ∈ (Base‘𝐺) ∧ (𝑊‘(𝐼 + 1)) ∈ (Base‘𝐺)) → ((𝑊𝐼)(+g𝐺)(𝑊‘(𝐼 + 1))) = ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))))
9588, 90, 94syl2anc 691 . . . . . . . . . 10 (𝜑 → ((𝑊𝐼)(+g𝐺)(𝑊‘(𝐼 + 1))) = ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))))
9682, 93, 953eqtrd 2648 . . . . . . . . 9 (𝜑 → (𝐺 Σg (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)) = ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))))
9796adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → (𝐺 Σg (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)) = ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))))
98 simpr 476 . . . . . . . 8 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷))
9919symgid 17644 . . . . . . . . . . 11 (𝐷𝑉 → ( I ↾ 𝐷) = (0g𝐺))
10021, 99syl 17 . . . . . . . . . 10 (𝜑 → ( I ↾ 𝐷) = (0g𝐺))
101 eqid 2610 . . . . . . . . . . 11 (0g𝐺) = (0g𝐺)
102101gsum0 17101 . . . . . . . . . 10 (𝐺 Σg ∅) = (0g𝐺)
103100, 102syl6eqr 2662 . . . . . . . . 9 (𝜑 → ( I ↾ 𝐷) = (𝐺 Σg ∅))
104103adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → ( I ↾ 𝐷) = (𝐺 Σg ∅))
10597, 98, 1043eqtrd 2648 . . . . . . 7 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → (𝐺 Σg (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)) = (𝐺 Σg ∅))
10660, 65, 70, 71, 72, 75, 77, 105gsumspl 17204 . . . . . 6 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)⟩)) = (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)))
10722adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
10859, 106, 1073eqtr3d 2652 . . . . 5 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)) = ( I ↾ 𝐷))
109 fveq2 6103 . . . . . . . 8 (𝑥 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩) → (#‘𝑥) = (#‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)))
110109eqeq1d 2612 . . . . . . 7 (𝑥 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩) → ((#‘𝑥) = (𝐿 − 2) ↔ (#‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)) = (𝐿 − 2)))
111 oveq2 6557 . . . . . . . 8 (𝑥 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩) → (𝐺 Σg 𝑥) = (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)))
112111eqeq1d 2612 . . . . . . 7 (𝑥 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩) → ((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ↔ (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)) = ( I ↾ 𝐷)))
113110, 112anbi12d 743 . . . . . 6 (𝑥 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩) → (((#‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) ↔ ((#‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)) = (𝐿 − 2) ∧ (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)) = ( I ↾ 𝐷))))
114113rspcev 3282 . . . . 5 (((𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩) ∈ Word 𝑇 ∧ ((#‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)) = (𝐿 − 2) ∧ (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ∅⟩)) = ( I ↾ 𝐷))) → ∃𝑥 ∈ Word 𝑇((#‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
1155, 55, 108, 114syl12anc 1316 . . . 4 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → ∃𝑥 ∈ Word 𝑇((#‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
116 psgnunilem2.in . . . . 5 (𝜑 → ¬ ∃𝑥 ∈ Word 𝑇((#‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
117116adantr 480 . . . 4 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → ¬ ∃𝑥 ∈ Word 𝑇((#‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
118115, 117pm2.21dd 185 . . 3 ((𝜑 ∧ ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷)) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I ))))
119118ex 449 . 2 (𝜑 → (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I )))))
1201adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → 𝑊 ∈ Word 𝑇)
121 simprl 790 . . . . . . . 8 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → 𝑟𝑇)
122 simprr 792 . . . . . . . 8 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → 𝑠𝑇)
123121, 122s2cld 13466 . . . . . . 7 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → ⟨“𝑟𝑠”⟩ ∈ Word 𝑇)
124 splcl 13354 . . . . . . 7 ((𝑊 ∈ Word 𝑇 ∧ ⟨“𝑟𝑠”⟩ ∈ Word 𝑇) → (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) ∈ Word 𝑇)
125120, 123, 124syl2anc 691 . . . . . 6 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) ∈ Word 𝑇)
126125adantrr 749 . . . . 5 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) ∈ Word 𝑇)
12764adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → 𝐺 ∈ Mnd)
12869adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → 𝑊 ∈ Word (Base‘𝐺))
12918adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → 𝐼 ∈ (0...(𝐼 + 2)))
13036adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝐼 + 2) ∈ (0...(#‘𝑊)))
13168, 123sseldi 3566 . . . . . . . . 9 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → ⟨“𝑟𝑠”⟩ ∈ Word (Base‘𝐺))
132131adantrr 749 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → ⟨“𝑟𝑠”⟩ ∈ Word (Base‘𝐺))
13374adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩) ∈ Word (Base‘𝐺))
134 simprr1 1102 . . . . . . . . 9 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠))
13596adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝐺 Σg (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)) = ((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))))
13664adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → 𝐺 ∈ Mnd)
13766a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑇 ⊆ (Base‘𝐺))
138137sselda 3568 . . . . . . . . . . . . 13 ((𝜑𝑟𝑇) → 𝑟 ∈ (Base‘𝐺))
139138adantrr 749 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → 𝑟 ∈ (Base‘𝐺))
140137sselda 3568 . . . . . . . . . . . . 13 ((𝜑𝑠𝑇) → 𝑠 ∈ (Base‘𝐺))
141140adantrl 748 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → 𝑠 ∈ (Base‘𝐺))
14260, 91gsumws2 17202 . . . . . . . . . . . 12 ((𝐺 ∈ Mnd ∧ 𝑟 ∈ (Base‘𝐺) ∧ 𝑠 ∈ (Base‘𝐺)) → (𝐺 Σg ⟨“𝑟𝑠”⟩) = (𝑟(+g𝐺)𝑠))
143136, 139, 141, 142syl3anc 1318 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (𝐺 Σg ⟨“𝑟𝑠”⟩) = (𝑟(+g𝐺)𝑠))
14419, 60, 91symgov 17633 . . . . . . . . . . . 12 ((𝑟 ∈ (Base‘𝐺) ∧ 𝑠 ∈ (Base‘𝐺)) → (𝑟(+g𝐺)𝑠) = (𝑟𝑠))
145139, 141, 144syl2anc 691 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (𝑟(+g𝐺)𝑠) = (𝑟𝑠))
146143, 145eqtrd 2644 . . . . . . . . . 10 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (𝐺 Σg ⟨“𝑟𝑠”⟩) = (𝑟𝑠))
147146adantrr 749 . . . . . . . . 9 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝐺 Σg ⟨“𝑟𝑠”⟩) = (𝑟𝑠))
148134, 135, 1473eqtr4rd 2655 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝐺 Σg ⟨“𝑟𝑠”⟩) = (𝐺 Σg (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)))
14960, 127, 128, 129, 130, 132, 133, 148gsumspl 17204 . . . . . . 7 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)⟩)))
15058adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), (𝑊 substr ⟨𝐼, (𝐼 + 2)⟩)⟩)) = (𝐺 Σg 𝑊))
15122adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
152149, 150, 1513eqtrd 2648 . . . . . 6 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = ( I ↾ 𝐷))
15318adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → 𝐼 ∈ (0...(𝐼 + 2)))
15436adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (𝐼 + 2) ∈ (0...(#‘𝑊)))
155120, 153, 154, 123spllen 13356 . . . . . . . 8 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (#‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = ((#‘𝑊) + ((#‘⟨“𝑟𝑠”⟩) − ((𝐼 + 2) − 𝐼))))
156 s2len 13484 . . . . . . . . . . . . 13 (#‘⟨“𝑟𝑠”⟩) = 2
157156oveq1i 6559 . . . . . . . . . . . 12 ((#‘⟨“𝑟𝑠”⟩) − ((𝐼 + 2) − 𝐼)) = (2 − ((𝐼 + 2) − 𝐼))
15845oveq2d 6565 . . . . . . . . . . . . 13 (𝜑 → (2 − ((𝐼 + 2) − 𝐼)) = (2 − 2))
15943subidi 10231 . . . . . . . . . . . . 13 (2 − 2) = 0
160158, 159syl6eq 2660 . . . . . . . . . . . 12 (𝜑 → (2 − ((𝐼 + 2) − 𝐼)) = 0)
161157, 160syl5eq 2656 . . . . . . . . . . 11 (𝜑 → ((#‘⟨“𝑟𝑠”⟩) − ((𝐼 + 2) − 𝐼)) = 0)
162161oveq2d 6565 . . . . . . . . . 10 (𝜑 → ((#‘𝑊) + ((#‘⟨“𝑟𝑠”⟩) − ((𝐼 + 2) − 𝐼))) = ((#‘𝑊) + 0))
16323, 51eqeltrd 2688 . . . . . . . . . . 11 (𝜑 → (#‘𝑊) ∈ ℂ)
164163addid1d 10115 . . . . . . . . . 10 (𝜑 → ((#‘𝑊) + 0) = (#‘𝑊))
165162, 164, 233eqtrd 2648 . . . . . . . . 9 (𝜑 → ((#‘𝑊) + ((#‘⟨“𝑟𝑠”⟩) − ((𝐼 + 2) − 𝐼))) = 𝐿)
166165adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → ((#‘𝑊) + ((#‘⟨“𝑟𝑠”⟩) − ((𝐼 + 2) − 𝐼))) = 𝐿)
167155, 166eqtrd 2644 . . . . . . 7 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (#‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = 𝐿)
168167adantrr 749 . . . . . 6 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (#‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = 𝐿)
169152, 168jca 553 . . . . 5 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → ((𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = ( I ↾ 𝐷) ∧ (#‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = 𝐿))
17026adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝐼 + 1) ∈ (0..^𝐿))
171 simprr2 1103 . . . . . . 7 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → 𝐴 ∈ dom (𝑠 ∖ I ))
172 1nn0 11185 . . . . . . . . . . . . . . 15 1 ∈ ℕ0
173 2nn 11062 . . . . . . . . . . . . . . 15 2 ∈ ℕ
174 1lt2 11071 . . . . . . . . . . . . . . 15 1 < 2
175 elfzo0 12376 . . . . . . . . . . . . . . 15 (1 ∈ (0..^2) ↔ (1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2))
176172, 173, 174, 175mpbir3an 1237 . . . . . . . . . . . . . 14 1 ∈ (0..^2)
177156oveq2i 6560 . . . . . . . . . . . . . 14 (0..^(#‘⟨“𝑟𝑠”⟩)) = (0..^2)
178176, 177eleqtrri 2687 . . . . . . . . . . . . 13 1 ∈ (0..^(#‘⟨“𝑟𝑠”⟩))
179178a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → 1 ∈ (0..^(#‘⟨“𝑟𝑠”⟩)))
180120, 153, 154, 123, 179splfv2a 13358 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) = (⟨“𝑟𝑠”⟩‘1))
181 s2fv1 13483 . . . . . . . . . . . 12 (𝑠𝑇 → (⟨“𝑟𝑠”⟩‘1) = 𝑠)
182181ad2antll 761 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (⟨“𝑟𝑠”⟩‘1) = 𝑠)
183180, 182eqtrd 2644 . . . . . . . . . 10 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) = 𝑠)
184183adantrr 749 . . . . . . . . 9 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) = 𝑠)
185184difeq1d 3689 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) ∖ I ) = (𝑠 ∖ I ))
186185dmeqd 5248 . . . . . . 7 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) ∖ I ) = dom (𝑠 ∖ I ))
187171, 186eleqtrrd 2691 . . . . . 6 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) ∖ I ))
188 fzosplitsni 12444 . . . . . . . . . . 11 (𝐼 ∈ (ℤ‘0) → (𝑗 ∈ (0..^(𝐼 + 1)) ↔ (𝑗 ∈ (0..^𝐼) ∨ 𝑗 = 𝐼)))
189 nn0uz 11598 . . . . . . . . . . 11 0 = (ℤ‘0)
190188, 189eleq2s 2706 . . . . . . . . . 10 (𝐼 ∈ ℕ0 → (𝑗 ∈ (0..^(𝐼 + 1)) ↔ (𝑗 ∈ (0..^𝐼) ∨ 𝑗 = 𝐼)))
19110, 190syl 17 . . . . . . . . 9 (𝜑 → (𝑗 ∈ (0..^(𝐼 + 1)) ↔ (𝑗 ∈ (0..^𝐼) ∨ 𝑗 = 𝐼)))
192191adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝑗 ∈ (0..^(𝐼 + 1)) ↔ (𝑗 ∈ (0..^𝐼) ∨ 𝑗 = 𝐼)))
193 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑗 → (𝑊𝑘) = (𝑊𝑗))
194193difeq1d 3689 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → ((𝑊𝑘) ∖ I ) = ((𝑊𝑗) ∖ I ))
195194dmeqd 5248 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → dom ((𝑊𝑘) ∖ I ) = dom ((𝑊𝑗) ∖ I ))
196195eleq2d 2673 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → (𝐴 ∈ dom ((𝑊𝑘) ∖ I ) ↔ 𝐴 ∈ dom ((𝑊𝑗) ∖ I )))
197196notbid 307 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ) ↔ ¬ 𝐴 ∈ dom ((𝑊𝑗) ∖ I )))
198197rspccva 3281 . . . . . . . . . . . . . 14 ((∀𝑘 ∈ (0..^𝐼) ¬ 𝐴 ∈ dom ((𝑊𝑘) ∖ I ) ∧ 𝑗 ∈ (0..^𝐼)) → ¬ 𝐴 ∈ dom ((𝑊𝑗) ∖ I ))
19925, 198sylan 487 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝐼)) → ¬ 𝐴 ∈ dom ((𝑊𝑗) ∖ I ))
200199adantlr 747 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟𝑇𝑠𝑇)) ∧ 𝑗 ∈ (0..^𝐼)) → ¬ 𝐴 ∈ dom ((𝑊𝑗) ∖ I ))
2011ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟𝑇𝑠𝑇)) ∧ 𝑗 ∈ (0..^𝐼)) → 𝑊 ∈ Word 𝑇)
20218ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟𝑇𝑠𝑇)) ∧ 𝑗 ∈ (0..^𝐼)) → 𝐼 ∈ (0...(𝐼 + 2)))
20336ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟𝑇𝑠𝑇)) ∧ 𝑗 ∈ (0..^𝐼)) → (𝐼 + 2) ∈ (0...(#‘𝑊)))
204123adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟𝑇𝑠𝑇)) ∧ 𝑗 ∈ (0..^𝐼)) → ⟨“𝑟𝑠”⟩ ∈ Word 𝑇)
205 simpr 476 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟𝑇𝑠𝑇)) ∧ 𝑗 ∈ (0..^𝐼)) → 𝑗 ∈ (0..^𝐼))
206201, 202, 203, 204, 205splfv1 13357 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟𝑇𝑠𝑇)) ∧ 𝑗 ∈ (0..^𝐼)) → ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) = (𝑊𝑗))
207206difeq1d 3689 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟𝑇𝑠𝑇)) ∧ 𝑗 ∈ (0..^𝐼)) → (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ) = ((𝑊𝑗) ∖ I ))
208207dmeqd 5248 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟𝑇𝑠𝑇)) ∧ 𝑗 ∈ (0..^𝐼)) → dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ) = dom ((𝑊𝑗) ∖ I ))
209200, 208neleqtrrd 2710 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟𝑇𝑠𝑇)) ∧ 𝑗 ∈ (0..^𝐼)) → ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ))
210209ex 449 . . . . . . . . . 10 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (𝑗 ∈ (0..^𝐼) → ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))
211210adantrr 749 . . . . . . . . 9 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝑗 ∈ (0..^𝐼) → ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))
212 simprr3 1104 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → ¬ 𝐴 ∈ dom (𝑟 ∖ I ))
213 0nn0 11184 . . . . . . . . . . . . . . . . . . . 20 0 ∈ ℕ0
214 2pos 10989 . . . . . . . . . . . . . . . . . . . 20 0 < 2
215 elfzo0 12376 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ (0..^2) ↔ (0 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 0 < 2))
216213, 173, 214, 215mpbir3an 1237 . . . . . . . . . . . . . . . . . . 19 0 ∈ (0..^2)
217216, 177eleqtrri 2687 . . . . . . . . . . . . . . . . . 18 0 ∈ (0..^(#‘⟨“𝑟𝑠”⟩))
218217a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → 0 ∈ (0..^(#‘⟨“𝑟𝑠”⟩)))
219120, 153, 154, 123, 218splfv2a 13358 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 0)) = (⟨“𝑟𝑠”⟩‘0))
22029addid1d 10115 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐼 + 0) = 𝐼)
221220adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (𝐼 + 0) = 𝐼)
222221fveq2d 6107 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 0)) = ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼))
223 s2fv0 13482 . . . . . . . . . . . . . . . . 17 (𝑟𝑇 → (⟨“𝑟𝑠”⟩‘0) = 𝑟)
224223ad2antrl 760 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (⟨“𝑟𝑠”⟩‘0) = 𝑟)
225219, 222, 2243eqtr3d 2652 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼) = 𝑟)
226225difeq1d 3689 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼) ∖ I ) = (𝑟 ∖ I ))
227226dmeqd 5248 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼) ∖ I ) = dom (𝑟 ∖ I ))
228227eleq2d 2673 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → (𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼) ∖ I ) ↔ 𝐴 ∈ dom (𝑟 ∖ I )))
229228adantrr 749 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼) ∖ I ) ↔ 𝐴 ∈ dom (𝑟 ∖ I )))
230212, 229mtbird 314 . . . . . . . . . 10 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼) ∖ I ))
231 fveq2 6103 . . . . . . . . . . . . . 14 (𝑗 = 𝐼 → ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) = ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼))
232231difeq1d 3689 . . . . . . . . . . . . 13 (𝑗 = 𝐼 → (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ) = (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼) ∖ I ))
233232dmeqd 5248 . . . . . . . . . . . 12 (𝑗 = 𝐼 → dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ) = dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼) ∖ I ))
234233eleq2d 2673 . . . . . . . . . . 11 (𝑗 = 𝐼 → (𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ) ↔ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼) ∖ I )))
235234notbid 307 . . . . . . . . . 10 (𝑗 = 𝐼 → (¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ) ↔ ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝐼) ∖ I )))
236230, 235syl5ibrcom 236 . . . . . . . . 9 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝑗 = 𝐼 → ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))
237211, 236jaod 394 . . . . . . . 8 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → ((𝑗 ∈ (0..^𝐼) ∨ 𝑗 = 𝐼) → ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))
238192, 237sylbid 229 . . . . . . 7 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → (𝑗 ∈ (0..^(𝐼 + 1)) → ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))
239238ralrimiv 2948 . . . . . 6 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ))
240170, 187, 2393jca 1235 . . . . 5 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))
241 oveq2 6557 . . . . . . . . 9 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → (𝐺 Σg 𝑤) = (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)))
242241eqeq1d 2612 . . . . . . . 8 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → ((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ↔ (𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = ( I ↾ 𝐷)))
243 fveq2 6103 . . . . . . . . 9 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → (#‘𝑤) = (#‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)))
244243eqeq1d 2612 . . . . . . . 8 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → ((#‘𝑤) = 𝐿 ↔ (#‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = 𝐿))
245242, 244anbi12d 743 . . . . . . 7 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → (((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ↔ ((𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = ( I ↾ 𝐷) ∧ (#‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = 𝐿)))
246 fveq1 6102 . . . . . . . . . . 11 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → (𝑤‘(𝐼 + 1)) = ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)))
247246difeq1d 3689 . . . . . . . . . 10 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → ((𝑤‘(𝐼 + 1)) ∖ I ) = (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) ∖ I ))
248247dmeqd 5248 . . . . . . . . 9 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → dom ((𝑤‘(𝐼 + 1)) ∖ I ) = dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) ∖ I ))
249248eleq2d 2673 . . . . . . . 8 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → (𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ↔ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) ∖ I )))
250 fveq1 6102 . . . . . . . . . . . . 13 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → (𝑤𝑗) = ((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗))
251250difeq1d 3689 . . . . . . . . . . . 12 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → ((𝑤𝑗) ∖ I ) = (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ))
252251dmeqd 5248 . . . . . . . . . . 11 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → dom ((𝑤𝑗) ∖ I ) = dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ))
253252eleq2d 2673 . . . . . . . . . 10 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → (𝐴 ∈ dom ((𝑤𝑗) ∖ I ) ↔ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))
254253notbid 307 . . . . . . . . 9 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → (¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I ) ↔ ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))
255254ralbidv 2969 . . . . . . . 8 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → (∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I ) ↔ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))
256249, 2553anbi23d 1394 . . . . . . 7 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → (((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I )) ↔ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I ))))
257245, 256anbi12d 743 . . . . . 6 (𝑤 = (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) → ((((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I ))) ↔ (((𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = ( I ↾ 𝐷) ∧ (#‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))))
258257rspcev 3282 . . . . 5 (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩) ∈ Word 𝑇 ∧ (((𝐺 Σg (𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = ( I ↾ 𝐷) ∧ (#‘(𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom (((𝑊 splice ⟨𝐼, (𝐼 + 2), ⟨“𝑟𝑠”⟩⟩)‘𝑗) ∖ I )))) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I ))))
259126, 169, 240, 258syl12anc 1316 . . . 4 ((𝜑 ∧ ((𝑟𝑇𝑠𝑇) ∧ (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )))) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I ))))
260259expr 641 . . 3 ((𝜑 ∧ (𝑟𝑇𝑠𝑇)) → ((((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I )))))
261260rexlimdvva 3020 . 2 (𝜑 → (∃𝑟𝑇𝑠𝑇 (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I )))))
26220, 21, 87, 89, 24psgnunilem1 17736 . 2 (𝜑 → (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = ( I ↾ 𝐷) ∨ ∃𝑟𝑇𝑠𝑇 (((𝑊𝐼) ∘ (𝑊‘(𝐼 + 1))) = (𝑟𝑠) ∧ 𝐴 ∈ dom (𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom (𝑟 ∖ I ))))
263119, 261, 262mpjaod 395 1 (𝜑 → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ ((𝐼 + 1) ∈ (0..^𝐿) ∧ 𝐴 ∈ dom ((𝑤‘(𝐼 + 1)) ∖ I ) ∧ ∀𝑗 ∈ (0..^(𝐼 + 1)) ¬ 𝐴 ∈ dom ((𝑤𝑗) ∖ I ))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  cdif 3537  wss 3540  c0 3874  cop 4131  cotp 4133   class class class wbr 4583   I cid 4948  dom cdm 5038  ran crn 5039  cres 5040  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cle 9954  cmin 10145  -cneg 10146  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  ...cfz 12197  ..^cfzo 12334  #chash 12979  Word cword 13146   substr csubstr 13150   splice csplice 13151  ⟨“cs2 13437  Basecbs 15695  +gcplusg 15768  0gc0g 15923   Σg cgsu 15924  Mndcmnd 17117  Grpcgrp 17245  SymGrpcsymg 17620  pmTrspcpmtr 17684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-xor 1457  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158  df-splice 13159  df-s2 13444  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-tset 15787  df-0g 15925  df-gsum 15926  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-subg 17414  df-symg 17621  df-pmtr 17685
This theorem is referenced by:  psgnunilem3  17739
  Copyright terms: Public domain W3C validator