MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnunilem3 Structured version   Visualization version   GIF version

Theorem psgnunilem3 17739
Description: Lemma for psgnuni 17742. Any nonempty representation of the identity can be incrementally transformed into a representation two shorter. (Contributed by Stefan O'Rear, 25-Aug-2015.)
Hypotheses
Ref Expression
psgnunilem3.g 𝐺 = (SymGrp‘𝐷)
psgnunilem3.t 𝑇 = ran (pmTrsp‘𝐷)
psgnunilem3.d (𝜑𝐷𝑉)
psgnunilem3.w1 (𝜑𝑊 ∈ Word 𝑇)
psgnunilem3.l (𝜑 → (#‘𝑊) = 𝐿)
psgnunilem3.w2 (𝜑 → (#‘𝑊) ∈ ℕ)
psgnunilem3.w3 (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
psgnunilem3.in (𝜑 → ¬ ∃𝑥 ∈ Word 𝑇((#‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
Assertion
Ref Expression
psgnunilem3 ¬ 𝜑
Distinct variable groups:   𝑥,𝐷   𝑥,𝐺   𝑥,𝐿   𝑥,𝑇   𝑥,𝑊   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem psgnunilem3
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgnunilem3.l . . . 4 (𝜑 → (#‘𝑊) = 𝐿)
2 psgnunilem3.w2 . . . 4 (𝜑 → (#‘𝑊) ∈ ℕ)
31, 2eqeltrrd 2689 . . 3 (𝜑𝐿 ∈ ℕ)
43nnnn0d 11228 . 2 (𝜑𝐿 ∈ ℕ0)
5 psgnunilem3.w1 . . . . . . 7 (𝜑𝑊 ∈ Word 𝑇)
6 wrdf 13165 . . . . . . 7 (𝑊 ∈ Word 𝑇𝑊:(0..^(#‘𝑊))⟶𝑇)
75, 6syl 17 . . . . . 6 (𝜑𝑊:(0..^(#‘𝑊))⟶𝑇)
8 0nn0 11184 . . . . . . . . 9 0 ∈ ℕ0
98a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ ℕ0)
103nngt0d 10941 . . . . . . . 8 (𝜑 → 0 < 𝐿)
11 elfzo0 12376 . . . . . . . 8 (0 ∈ (0..^𝐿) ↔ (0 ∈ ℕ0𝐿 ∈ ℕ ∧ 0 < 𝐿))
129, 3, 10, 11syl3anbrc 1239 . . . . . . 7 (𝜑 → 0 ∈ (0..^𝐿))
131oveq2d 6565 . . . . . . 7 (𝜑 → (0..^(#‘𝑊)) = (0..^𝐿))
1412, 13eleqtrrd 2691 . . . . . 6 (𝜑 → 0 ∈ (0..^(#‘𝑊)))
157, 14ffvelrnd 6268 . . . . 5 (𝜑 → (𝑊‘0) ∈ 𝑇)
16 eqid 2610 . . . . . 6 (pmTrsp‘𝐷) = (pmTrsp‘𝐷)
17 psgnunilem3.t . . . . . 6 𝑇 = ran (pmTrsp‘𝐷)
1816, 17pmtrfmvdn0 17705 . . . . 5 ((𝑊‘0) ∈ 𝑇 → dom ((𝑊‘0) ∖ I ) ≠ ∅)
1915, 18syl 17 . . . 4 (𝜑 → dom ((𝑊‘0) ∖ I ) ≠ ∅)
20 n0 3890 . . . 4 (dom ((𝑊‘0) ∖ I ) ≠ ∅ ↔ ∃𝑒 𝑒 ∈ dom ((𝑊‘0) ∖ I ))
2119, 20sylib 207 . . 3 (𝜑 → ∃𝑒 𝑒 ∈ dom ((𝑊‘0) ∖ I ))
22 fzonel 12352 . . . . . . . 8 ¬ 𝐿 ∈ (0..^𝐿)
23 simpr1 1060 . . . . . . . 8 ((((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (𝐿 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝐿) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝐿) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))) → 𝐿 ∈ (0..^𝐿))
2422, 23mto 187 . . . . . . 7 ¬ (((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (𝐿 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝐿) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝐿) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))
2524a1i 11 . . . . . 6 (𝑤 ∈ Word 𝑇 → ¬ (((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (𝐿 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝐿) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝐿) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))))
2625nrex 2983 . . . . 5 ¬ ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (𝐿 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝐿) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝐿) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))
27 eleq1 2676 . . . . . . . . . 10 (𝑎 = 0 → (𝑎 ∈ (0..^𝐿) ↔ 0 ∈ (0..^𝐿)))
28 fveq2 6103 . . . . . . . . . . . . 13 (𝑎 = 0 → (𝑤𝑎) = (𝑤‘0))
2928difeq1d 3689 . . . . . . . . . . . 12 (𝑎 = 0 → ((𝑤𝑎) ∖ I ) = ((𝑤‘0) ∖ I ))
3029dmeqd 5248 . . . . . . . . . . 11 (𝑎 = 0 → dom ((𝑤𝑎) ∖ I ) = dom ((𝑤‘0) ∖ I ))
3130eleq2d 2673 . . . . . . . . . 10 (𝑎 = 0 → (𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ↔ 𝑒 ∈ dom ((𝑤‘0) ∖ I )))
32 oveq2 6557 . . . . . . . . . . 11 (𝑎 = 0 → (0..^𝑎) = (0..^0))
3332raleqdv 3121 . . . . . . . . . 10 (𝑎 = 0 → (∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ) ↔ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))
3427, 31, 333anbi123d 1391 . . . . . . . . 9 (𝑎 = 0 → ((𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )) ↔ (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))))
3534anbi2d 736 . . . . . . . 8 (𝑎 = 0 → ((((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))) ↔ (((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))))
3635rexbidv 3034 . . . . . . 7 (𝑎 = 0 → (∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))) ↔ ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))))
3736imbi2d 329 . . . . . 6 (𝑎 = 0 → (((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))) ↔ ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))))))
38 eleq1 2676 . . . . . . . . . . 11 (𝑎 = 𝑏 → (𝑎 ∈ (0..^𝐿) ↔ 𝑏 ∈ (0..^𝐿)))
39 fveq2 6103 . . . . . . . . . . . . . 14 (𝑎 = 𝑏 → (𝑤𝑎) = (𝑤𝑏))
4039difeq1d 3689 . . . . . . . . . . . . 13 (𝑎 = 𝑏 → ((𝑤𝑎) ∖ I ) = ((𝑤𝑏) ∖ I ))
4140dmeqd 5248 . . . . . . . . . . . 12 (𝑎 = 𝑏 → dom ((𝑤𝑎) ∖ I ) = dom ((𝑤𝑏) ∖ I ))
4241eleq2d 2673 . . . . . . . . . . 11 (𝑎 = 𝑏 → (𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ↔ 𝑒 ∈ dom ((𝑤𝑏) ∖ I )))
43 oveq2 6557 . . . . . . . . . . . 12 (𝑎 = 𝑏 → (0..^𝑎) = (0..^𝑏))
4443raleqdv 3121 . . . . . . . . . . 11 (𝑎 = 𝑏 → (∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ) ↔ ∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))
4538, 42, 443anbi123d 1391 . . . . . . . . . 10 (𝑎 = 𝑏 → ((𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )) ↔ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑏) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))))
4645anbi2d 736 . . . . . . . . 9 (𝑎 = 𝑏 → ((((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))) ↔ (((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑏) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))))
4746rexbidv 3034 . . . . . . . 8 (𝑎 = 𝑏 → (∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))) ↔ ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑏) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))))
48 oveq2 6557 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (𝐺 Σg 𝑤) = (𝐺 Σg 𝑥))
4948eqeq1d 2612 . . . . . . . . . . 11 (𝑤 = 𝑥 → ((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ↔ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
50 fveq2 6103 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (#‘𝑤) = (#‘𝑥))
5150eqeq1d 2612 . . . . . . . . . . 11 (𝑤 = 𝑥 → ((#‘𝑤) = 𝐿 ↔ (#‘𝑥) = 𝐿))
5249, 51anbi12d 743 . . . . . . . . . 10 (𝑤 = 𝑥 → (((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ↔ ((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (#‘𝑥) = 𝐿)))
53 fveq1 6102 . . . . . . . . . . . . . 14 (𝑤 = 𝑥 → (𝑤𝑏) = (𝑥𝑏))
5453difeq1d 3689 . . . . . . . . . . . . 13 (𝑤 = 𝑥 → ((𝑤𝑏) ∖ I ) = ((𝑥𝑏) ∖ I ))
5554dmeqd 5248 . . . . . . . . . . . 12 (𝑤 = 𝑥 → dom ((𝑤𝑏) ∖ I ) = dom ((𝑥𝑏) ∖ I ))
5655eleq2d 2673 . . . . . . . . . . 11 (𝑤 = 𝑥 → (𝑒 ∈ dom ((𝑤𝑏) ∖ I ) ↔ 𝑒 ∈ dom ((𝑥𝑏) ∖ I )))
57 fveq1 6102 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑥 → (𝑤𝑐) = (𝑥𝑐))
5857difeq1d 3689 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑥 → ((𝑤𝑐) ∖ I ) = ((𝑥𝑐) ∖ I ))
5958dmeqd 5248 . . . . . . . . . . . . . . 15 (𝑤 = 𝑥 → dom ((𝑤𝑐) ∖ I ) = dom ((𝑥𝑐) ∖ I ))
6059eleq2d 2673 . . . . . . . . . . . . . 14 (𝑤 = 𝑥 → (𝑒 ∈ dom ((𝑤𝑐) ∖ I ) ↔ 𝑒 ∈ dom ((𝑥𝑐) ∖ I )))
6160notbid 307 . . . . . . . . . . . . 13 (𝑤 = 𝑥 → (¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ) ↔ ¬ 𝑒 ∈ dom ((𝑥𝑐) ∖ I )))
6261ralbidv 2969 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ) ↔ ∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑐) ∖ I )))
63 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑐 = 𝑑 → (𝑥𝑐) = (𝑥𝑑))
6463difeq1d 3689 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑑 → ((𝑥𝑐) ∖ I ) = ((𝑥𝑑) ∖ I ))
6564dmeqd 5248 . . . . . . . . . . . . . . 15 (𝑐 = 𝑑 → dom ((𝑥𝑐) ∖ I ) = dom ((𝑥𝑑) ∖ I ))
6665eleq2d 2673 . . . . . . . . . . . . . 14 (𝑐 = 𝑑 → (𝑒 ∈ dom ((𝑥𝑐) ∖ I ) ↔ 𝑒 ∈ dom ((𝑥𝑑) ∖ I )))
6766notbid 307 . . . . . . . . . . . . 13 (𝑐 = 𝑑 → (¬ 𝑒 ∈ dom ((𝑥𝑐) ∖ I ) ↔ ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I )))
6867cbvralv 3147 . . . . . . . . . . . 12 (∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑐) ∖ I ) ↔ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))
6962, 68syl6bb 275 . . . . . . . . . . 11 (𝑤 = 𝑥 → (∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ) ↔ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I )))
7056, 693anbi23d 1394 . . . . . . . . . 10 (𝑤 = 𝑥 → ((𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑏) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )) ↔ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))))
7152, 70anbi12d 743 . . . . . . . . 9 (𝑤 = 𝑥 → ((((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑏) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))) ↔ (((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (#‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I )))))
7271cbvrexv 3148 . . . . . . . 8 (∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑏) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))) ↔ ∃𝑥 ∈ Word 𝑇(((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (#‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))))
7347, 72syl6bb 275 . . . . . . 7 (𝑎 = 𝑏 → (∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))) ↔ ∃𝑥 ∈ Word 𝑇(((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (#‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I )))))
7473imbi2d 329 . . . . . 6 (𝑎 = 𝑏 → (((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))) ↔ ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑥 ∈ Word 𝑇(((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (#‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))))))
75 eleq1 2676 . . . . . . . . . 10 (𝑎 = (𝑏 + 1) → (𝑎 ∈ (0..^𝐿) ↔ (𝑏 + 1) ∈ (0..^𝐿)))
76 fveq2 6103 . . . . . . . . . . . . 13 (𝑎 = (𝑏 + 1) → (𝑤𝑎) = (𝑤‘(𝑏 + 1)))
7776difeq1d 3689 . . . . . . . . . . . 12 (𝑎 = (𝑏 + 1) → ((𝑤𝑎) ∖ I ) = ((𝑤‘(𝑏 + 1)) ∖ I ))
7877dmeqd 5248 . . . . . . . . . . 11 (𝑎 = (𝑏 + 1) → dom ((𝑤𝑎) ∖ I ) = dom ((𝑤‘(𝑏 + 1)) ∖ I ))
7978eleq2d 2673 . . . . . . . . . 10 (𝑎 = (𝑏 + 1) → (𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ↔ 𝑒 ∈ dom ((𝑤‘(𝑏 + 1)) ∖ I )))
80 oveq2 6557 . . . . . . . . . . 11 (𝑎 = (𝑏 + 1) → (0..^𝑎) = (0..^(𝑏 + 1)))
8180raleqdv 3121 . . . . . . . . . 10 (𝑎 = (𝑏 + 1) → (∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ) ↔ ∀𝑐 ∈ (0..^(𝑏 + 1)) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))
8275, 79, 813anbi123d 1391 . . . . . . . . 9 (𝑎 = (𝑏 + 1) → ((𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )) ↔ ((𝑏 + 1) ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘(𝑏 + 1)) ∖ I ) ∧ ∀𝑐 ∈ (0..^(𝑏 + 1)) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))))
8382anbi2d 736 . . . . . . . 8 (𝑎 = (𝑏 + 1) → ((((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))) ↔ (((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ ((𝑏 + 1) ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘(𝑏 + 1)) ∖ I ) ∧ ∀𝑐 ∈ (0..^(𝑏 + 1)) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))))
8483rexbidv 3034 . . . . . . 7 (𝑎 = (𝑏 + 1) → (∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))) ↔ ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ ((𝑏 + 1) ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘(𝑏 + 1)) ∖ I ) ∧ ∀𝑐 ∈ (0..^(𝑏 + 1)) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))))
8584imbi2d 329 . . . . . 6 (𝑎 = (𝑏 + 1) → (((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))) ↔ ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ ((𝑏 + 1) ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘(𝑏 + 1)) ∖ I ) ∧ ∀𝑐 ∈ (0..^(𝑏 + 1)) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))))))
86 eleq1 2676 . . . . . . . . . 10 (𝑎 = 𝐿 → (𝑎 ∈ (0..^𝐿) ↔ 𝐿 ∈ (0..^𝐿)))
87 fveq2 6103 . . . . . . . . . . . . 13 (𝑎 = 𝐿 → (𝑤𝑎) = (𝑤𝐿))
8887difeq1d 3689 . . . . . . . . . . . 12 (𝑎 = 𝐿 → ((𝑤𝑎) ∖ I ) = ((𝑤𝐿) ∖ I ))
8988dmeqd 5248 . . . . . . . . . . 11 (𝑎 = 𝐿 → dom ((𝑤𝑎) ∖ I ) = dom ((𝑤𝐿) ∖ I ))
9089eleq2d 2673 . . . . . . . . . 10 (𝑎 = 𝐿 → (𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ↔ 𝑒 ∈ dom ((𝑤𝐿) ∖ I )))
91 oveq2 6557 . . . . . . . . . . 11 (𝑎 = 𝐿 → (0..^𝑎) = (0..^𝐿))
9291raleqdv 3121 . . . . . . . . . 10 (𝑎 = 𝐿 → (∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ) ↔ ∀𝑐 ∈ (0..^𝐿) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))
9386, 90, 923anbi123d 1391 . . . . . . . . 9 (𝑎 = 𝐿 → ((𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )) ↔ (𝐿 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝐿) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝐿) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))))
9493anbi2d 736 . . . . . . . 8 (𝑎 = 𝐿 → ((((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))) ↔ (((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (𝐿 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝐿) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝐿) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))))
9594rexbidv 3034 . . . . . . 7 (𝑎 = 𝐿 → (∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))) ↔ ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (𝐿 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝐿) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝐿) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))))
9695imbi2d 329 . . . . . 6 (𝑎 = 𝐿 → (((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (𝑎 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝑎) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝑎) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))) ↔ ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (𝐿 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝐿) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝐿) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))))))
975adantr 480 . . . . . . 7 ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → 𝑊 ∈ Word 𝑇)
98 psgnunilem3.w3 . . . . . . . . 9 (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
9998, 1jca 553 . . . . . . . 8 (𝜑 → ((𝐺 Σg 𝑊) = ( I ↾ 𝐷) ∧ (#‘𝑊) = 𝐿))
10099adantr 480 . . . . . . 7 ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ((𝐺 Σg 𝑊) = ( I ↾ 𝐷) ∧ (#‘𝑊) = 𝐿))
10112adantr 480 . . . . . . . 8 ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → 0 ∈ (0..^𝐿))
102 simpr 476 . . . . . . . 8 ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → 𝑒 ∈ dom ((𝑊‘0) ∖ I ))
103 ral0 4028 . . . . . . . . . 10 𝑐 ∈ ∅ ¬ 𝑒 ∈ dom ((𝑊𝑐) ∖ I )
104 fzo0 12361 . . . . . . . . . . 11 (0..^0) = ∅
105104raleqi 3119 . . . . . . . . . 10 (∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑊𝑐) ∖ I ) ↔ ∀𝑐 ∈ ∅ ¬ 𝑒 ∈ dom ((𝑊𝑐) ∖ I ))
106103, 105mpbir 220 . . . . . . . . 9 𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑊𝑐) ∖ I )
107106a1i 11 . . . . . . . 8 ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑊𝑐) ∖ I ))
108101, 102, 1073jca 1235 . . . . . . 7 ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑊𝑐) ∖ I )))
109 oveq2 6557 . . . . . . . . . . 11 (𝑤 = 𝑊 → (𝐺 Σg 𝑤) = (𝐺 Σg 𝑊))
110109eqeq1d 2612 . . . . . . . . . 10 (𝑤 = 𝑊 → ((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ↔ (𝐺 Σg 𝑊) = ( I ↾ 𝐷)))
111 fveq2 6103 . . . . . . . . . . 11 (𝑤 = 𝑊 → (#‘𝑤) = (#‘𝑊))
112111eqeq1d 2612 . . . . . . . . . 10 (𝑤 = 𝑊 → ((#‘𝑤) = 𝐿 ↔ (#‘𝑊) = 𝐿))
113110, 112anbi12d 743 . . . . . . . . 9 (𝑤 = 𝑊 → (((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ↔ ((𝐺 Σg 𝑊) = ( I ↾ 𝐷) ∧ (#‘𝑊) = 𝐿)))
114 fveq1 6102 . . . . . . . . . . . . 13 (𝑤 = 𝑊 → (𝑤‘0) = (𝑊‘0))
115114difeq1d 3689 . . . . . . . . . . . 12 (𝑤 = 𝑊 → ((𝑤‘0) ∖ I ) = ((𝑊‘0) ∖ I ))
116115dmeqd 5248 . . . . . . . . . . 11 (𝑤 = 𝑊 → dom ((𝑤‘0) ∖ I ) = dom ((𝑊‘0) ∖ I ))
117116eleq2d 2673 . . . . . . . . . 10 (𝑤 = 𝑊 → (𝑒 ∈ dom ((𝑤‘0) ∖ I ) ↔ 𝑒 ∈ dom ((𝑊‘0) ∖ I )))
118 fveq1 6102 . . . . . . . . . . . . . . 15 (𝑤 = 𝑊 → (𝑤𝑐) = (𝑊𝑐))
119118difeq1d 3689 . . . . . . . . . . . . . 14 (𝑤 = 𝑊 → ((𝑤𝑐) ∖ I ) = ((𝑊𝑐) ∖ I ))
120119dmeqd 5248 . . . . . . . . . . . . 13 (𝑤 = 𝑊 → dom ((𝑤𝑐) ∖ I ) = dom ((𝑊𝑐) ∖ I ))
121120eleq2d 2673 . . . . . . . . . . . 12 (𝑤 = 𝑊 → (𝑒 ∈ dom ((𝑤𝑐) ∖ I ) ↔ 𝑒 ∈ dom ((𝑊𝑐) ∖ I )))
122121notbid 307 . . . . . . . . . . 11 (𝑤 = 𝑊 → (¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ) ↔ ¬ 𝑒 ∈ dom ((𝑊𝑐) ∖ I )))
123122ralbidv 2969 . . . . . . . . . 10 (𝑤 = 𝑊 → (∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ) ↔ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑊𝑐) ∖ I )))
124117, 1233anbi23d 1394 . . . . . . . . 9 (𝑤 = 𝑊 → ((0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )) ↔ (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑊𝑐) ∖ I ))))
125113, 124anbi12d 743 . . . . . . . 8 (𝑤 = 𝑊 → ((((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))) ↔ (((𝐺 Σg 𝑊) = ( I ↾ 𝐷) ∧ (#‘𝑊) = 𝐿) ∧ (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑊𝑐) ∖ I )))))
126125rspcev 3282 . . . . . . 7 ((𝑊 ∈ Word 𝑇 ∧ (((𝐺 Σg 𝑊) = ( I ↾ 𝐷) ∧ (#‘𝑊) = 𝐿) ∧ (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑊‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑊𝑐) ∖ I )))) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))))
12797, 100, 108, 126syl12anc 1316 . . . . . 6 ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (0 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘0) ∖ I ) ∧ ∀𝑐 ∈ (0..^0) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))))
128 psgnunilem3.g . . . . . . . . . 10 𝐺 = (SymGrp‘𝐷)
129 psgnunilem3.d . . . . . . . . . . 11 (𝜑𝐷𝑉)
130129ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) ∧ (𝑥 ∈ Word 𝑇 ∧ (((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (#‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))))) → 𝐷𝑉)
131 simprl 790 . . . . . . . . . 10 (((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) ∧ (𝑥 ∈ Word 𝑇 ∧ (((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (#‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))))) → 𝑥 ∈ Word 𝑇)
132 simpll 786 . . . . . . . . . . 11 ((((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (#‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))) → (𝐺 Σg 𝑥) = ( I ↾ 𝐷))
133132ad2antll 761 . . . . . . . . . 10 (((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) ∧ (𝑥 ∈ Word 𝑇 ∧ (((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (#‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))))) → (𝐺 Σg 𝑥) = ( I ↾ 𝐷))
134 simplr 788 . . . . . . . . . . 11 ((((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (#‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))) → (#‘𝑥) = 𝐿)
135134ad2antll 761 . . . . . . . . . 10 (((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) ∧ (𝑥 ∈ Word 𝑇 ∧ (((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (#‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))))) → (#‘𝑥) = 𝐿)
136 simpr1 1060 . . . . . . . . . . 11 ((((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (#‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))) → 𝑏 ∈ (0..^𝐿))
137136ad2antll 761 . . . . . . . . . 10 (((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) ∧ (𝑥 ∈ Word 𝑇 ∧ (((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (#‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))))) → 𝑏 ∈ (0..^𝐿))
138 simpr2 1061 . . . . . . . . . . 11 ((((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (#‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))) → 𝑒 ∈ dom ((𝑥𝑏) ∖ I ))
139138ad2antll 761 . . . . . . . . . 10 (((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) ∧ (𝑥 ∈ Word 𝑇 ∧ (((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (#‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))))) → 𝑒 ∈ dom ((𝑥𝑏) ∖ I ))
140 simpr3 1062 . . . . . . . . . . 11 ((((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (#‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))) → ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))
141140ad2antll 761 . . . . . . . . . 10 (((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) ∧ (𝑥 ∈ Word 𝑇 ∧ (((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (#‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))))) → ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))
142 psgnunilem3.in . . . . . . . . . . . 12 (𝜑 → ¬ ∃𝑥 ∈ Word 𝑇((#‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
143 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (#‘𝑥) = (#‘𝑦))
144143eqeq1d 2612 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((#‘𝑥) = (𝐿 − 2) ↔ (#‘𝑦) = (𝐿 − 2)))
145 oveq2 6557 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝐺 Σg 𝑥) = (𝐺 Σg 𝑦))
146145eqeq1d 2612 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ↔ (𝐺 Σg 𝑦) = ( I ↾ 𝐷)))
147144, 146anbi12d 743 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (((#‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) ↔ ((#‘𝑦) = (𝐿 − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷))))
148147cbvrexv 3148 . . . . . . . . . . . 12 (∃𝑥 ∈ Word 𝑇((#‘𝑥) = (𝐿 − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) ↔ ∃𝑦 ∈ Word 𝑇((#‘𝑦) = (𝐿 − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷)))
149142, 148sylnib 317 . . . . . . . . . . 11 (𝜑 → ¬ ∃𝑦 ∈ Word 𝑇((#‘𝑦) = (𝐿 − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷)))
150149ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) ∧ (𝑥 ∈ Word 𝑇 ∧ (((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (#‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))))) → ¬ ∃𝑦 ∈ Word 𝑇((#‘𝑦) = (𝐿 − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷)))
151128, 17, 130, 131, 133, 135, 137, 139, 141, 150psgnunilem2 17738 . . . . . . . . 9 (((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) ∧ (𝑥 ∈ Word 𝑇 ∧ (((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (#‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))))) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ ((𝑏 + 1) ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘(𝑏 + 1)) ∖ I ) ∧ ∀𝑐 ∈ (0..^(𝑏 + 1)) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))))
152151rexlimdvaa 3014 . . . . . . . 8 ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → (∃𝑥 ∈ Word 𝑇(((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (#‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I ))) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ ((𝑏 + 1) ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘(𝑏 + 1)) ∖ I ) ∧ ∀𝑐 ∈ (0..^(𝑏 + 1)) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))))
153152a2i 14 . . . . . . 7 (((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑥 ∈ Word 𝑇(((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (#‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I )))) → ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ ((𝑏 + 1) ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘(𝑏 + 1)) ∖ I ) ∧ ∀𝑐 ∈ (0..^(𝑏 + 1)) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))))
154153a1i 11 . . . . . 6 (𝑏 ∈ ℕ0 → (((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑥 ∈ Word 𝑇(((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ∧ (#‘𝑥) = 𝐿) ∧ (𝑏 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑥𝑏) ∖ I ) ∧ ∀𝑑 ∈ (0..^𝑏) ¬ 𝑒 ∈ dom ((𝑥𝑑) ∖ I )))) → ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ ((𝑏 + 1) ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤‘(𝑏 + 1)) ∖ I ) ∧ ∀𝑐 ∈ (0..^(𝑏 + 1)) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I ))))))
15537, 74, 85, 96, 127, 154nn0ind 11348 . . . . 5 (𝐿 ∈ ℕ0 → ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ∃𝑤 ∈ Word 𝑇(((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ∧ (#‘𝑤) = 𝐿) ∧ (𝐿 ∈ (0..^𝐿) ∧ 𝑒 ∈ dom ((𝑤𝐿) ∖ I ) ∧ ∀𝑐 ∈ (0..^𝐿) ¬ 𝑒 ∈ dom ((𝑤𝑐) ∖ I )))))
15626, 155mtoi 189 . . . 4 (𝐿 ∈ ℕ0 → ¬ (𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )))
157156con2i 133 . . 3 ((𝜑𝑒 ∈ dom ((𝑊‘0) ∖ I )) → ¬ 𝐿 ∈ ℕ0)
15821, 157exlimddv 1850 . 2 (𝜑 → ¬ 𝐿 ∈ ℕ0)
1594, 158pm2.65i 184 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  wrex 2897  cdif 3537  c0 3874   class class class wbr 4583   I cid 4948  dom cdm 5038  ran crn 5039  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cmin 10145  cn 10897  2c2 10947  0cn0 11169  ..^cfzo 12334  #chash 12979  Word cword 13146   Σg cgsu 15924  SymGrpcsymg 17620  pmTrspcpmtr 17684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-xor 1457  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158  df-splice 13159  df-s2 13444  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-tset 15787  df-0g 15925  df-gsum 15926  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-subg 17414  df-symg 17621  df-pmtr 17685
This theorem is referenced by:  psgnunilem4  17740
  Copyright terms: Public domain W3C validator