MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulogsumlem Structured version   Visualization version   GIF version

Theorem mulogsumlem 25020
Description: Lemma for mulogsum 25021. (Contributed by Mario Carneiro, 14-May-2016.)
Assertion
Ref Expression
mulogsumlem (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))))) ∈ 𝑂(1)
Distinct variable group:   𝑚,𝑛,𝑥

Proof of Theorem mulogsumlem
StepHypRef Expression
1 fzfid 12634 . . . . . 6 (𝑥 ∈ ℝ+ → (1...(⌊‘𝑥)) ∈ Fin)
2 elfznn 12241 . . . . . . . . . . 11 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
32adantl 481 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
4 mucl 24667 . . . . . . . . . 10 (𝑛 ∈ ℕ → (μ‘𝑛) ∈ ℤ)
53, 4syl 17 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℤ)
65zred 11358 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℝ)
76, 3nndivred 10946 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℝ)
87recnd 9947 . . . . . 6 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℂ)
91, 8fsumcl 14311 . . . . 5 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) ∈ ℂ)
109adantl 481 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) ∈ ℂ)
11 emre 24532 . . . . . 6 γ ∈ ℝ
1211recni 9931 . . . . 5 γ ∈ ℂ
1312a1i 11 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → γ ∈ ℂ)
14 mudivsum 25019 . . . . 5 (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ 𝑂(1)
1514a1i 11 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ 𝑂(1))
16 rpssre 11719 . . . . . 6 + ⊆ ℝ
17 o1const 14198 . . . . . 6 ((ℝ+ ⊆ ℝ ∧ γ ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ γ) ∈ 𝑂(1))
1816, 12, 17mp2an 704 . . . . 5 (𝑥 ∈ ℝ+ ↦ γ) ∈ 𝑂(1)
1918a1i 11 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ γ) ∈ 𝑂(1))
2010, 13, 15, 19o1mul2 14203 . . 3 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · γ)) ∈ 𝑂(1))
21 fzfid 12634 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑛))) ∈ Fin)
22 elfznn 12241 . . . . . . . . . . . 12 (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛))) → 𝑚 ∈ ℕ)
2322adantl 481 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℕ)
2423nnrecred 10943 . . . . . . . . . 10 (((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (1 / 𝑚) ∈ ℝ)
2521, 24fsumrecl 14312 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) ∈ ℝ)
262nnrpd 11746 . . . . . . . . . . 11 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℝ+)
27 rpdivcl 11732 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑥 / 𝑛) ∈ ℝ+)
2826, 27sylan2 490 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
2928relogcld 24173 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℝ)
3025, 29resubcld 10337 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))) ∈ ℝ)
317, 30remulcld 9949 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) ∈ ℝ)
321, 31fsumrecl 14312 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) ∈ ℝ)
3332recnd 9947 . . . . 5 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) ∈ ℂ)
3433adantl 481 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) ∈ ℂ)
35 mulcl 9899 . . . . . 6 ((Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) ∈ ℂ ∧ γ ∈ ℂ) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · γ) ∈ ℂ)
369, 12, 35sylancl 693 . . . . 5 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · γ) ∈ ℂ)
3736adantl 481 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · γ) ∈ ℂ)
38 nnrecre 10934 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → (1 / 𝑚) ∈ ℝ)
3938recnd 9947 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (1 / 𝑚) ∈ ℂ)
4023, 39syl 17 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (1 / 𝑚) ∈ ℂ)
4121, 40fsumcl 14311 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) ∈ ℂ)
4229recnd 9947 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℂ)
4341, 42subcld 10271 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))) ∈ ℂ)
448, 43mulcld 9939 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) ∈ ℂ)
45 mulcl 9899 . . . . . . . . 9 ((((μ‘𝑛) / 𝑛) ∈ ℂ ∧ γ ∈ ℂ) → (((μ‘𝑛) / 𝑛) · γ) ∈ ℂ)
468, 12, 45sylancl 693 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · γ) ∈ ℂ)
471, 44, 46fsumsub 14362 . . . . . . 7 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))((((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · γ)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · γ)))
4812a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → γ ∈ ℂ)
4941, 42, 48subsub4d 10302 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))) − γ) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))
5049oveq2d 6565 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))) − γ)) = (((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ))))
518, 43, 48subdid 10365 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))) − γ)) = ((((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · γ)))
5250, 51eqtr3d 2646 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ))) = ((((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · γ)))
5352sumeq2dv 14281 . . . . . . 7 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · γ)))
5412a1i 11 . . . . . . . . 9 (𝑥 ∈ ℝ+ → γ ∈ ℂ)
551, 54, 8fsummulc1 14359 . . . . . . . 8 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · γ) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · γ))
5655oveq2d 6565 . . . . . . 7 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · γ)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · γ)))
5747, 53, 563eqtr4d 2654 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · γ)))
5857mpteq2ia 4668 . . . . 5 (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · γ)))
5916a1i 11 . . . . . 6 (⊤ → ℝ+ ⊆ ℝ)
6042, 48addcld 9938 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛)) + γ) ∈ ℂ)
6141, 60subcld 10271 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)) ∈ ℂ)
628, 61mulcld 9939 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ))) ∈ ℂ)
631, 62fsumcl 14311 . . . . . . 7 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ))) ∈ ℂ)
6463adantl 481 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ))) ∈ ℂ)
65 1red 9934 . . . . . 6 (⊤ → 1 ∈ ℝ)
6663abscld 14023 . . . . . . . 8 (𝑥 ∈ ℝ+ → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))) ∈ ℝ)
6762abscld 14023 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))) ∈ ℝ)
681, 67fsumrecl 14312 . . . . . . . 8 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))) ∈ ℝ)
69 1red 9934 . . . . . . . 8 (𝑥 ∈ ℝ+ → 1 ∈ ℝ)
701, 62fsumabs 14374 . . . . . . . 8 (𝑥 ∈ ℝ+ → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))))
71 rprege0 11723 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
72 flge0nn0 12483 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
7371, 72syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ∈ ℕ0)
7473nn0red 11229 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ∈ ℝ)
75 rerpdivcl 11737 . . . . . . . . . 10 (((⌊‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((⌊‘𝑥) / 𝑥) ∈ ℝ)
7674, 75mpancom 700 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((⌊‘𝑥) / 𝑥) ∈ ℝ)
77 rpreccl 11733 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
7877adantr 480 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑥) ∈ ℝ+)
7978rpred 11748 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑥) ∈ ℝ)
808abscld 14023 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑛) / 𝑛)) ∈ ℝ)
813nnrecred 10943 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℝ)
8261abscld 14023 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ))) ∈ ℝ)
83 id 22 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ+)
84 rpdivcl 11732 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℝ+𝑥 ∈ ℝ+) → (𝑛 / 𝑥) ∈ ℝ+)
8526, 83, 84syl2anr 494 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 / 𝑥) ∈ ℝ+)
8685rpred 11748 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 / 𝑥) ∈ ℝ)
878absge0d 14031 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((μ‘𝑛) / 𝑛)))
8861absge0d 14031 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ))))
896recnd 9947 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℂ)
903nncnd 10913 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
913nnne0d 10942 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≠ 0)
9289, 90, 91absdivd 14042 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑛) / 𝑛)) = ((abs‘(μ‘𝑛)) / (abs‘𝑛)))
933nnrpd 11746 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
94 rprege0 11723 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℝ+ → (𝑛 ∈ ℝ ∧ 0 ≤ 𝑛))
9593, 94syl 17 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 ∈ ℝ ∧ 0 ≤ 𝑛))
96 absid 13884 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℝ ∧ 0 ≤ 𝑛) → (abs‘𝑛) = 𝑛)
9795, 96syl 17 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘𝑛) = 𝑛)
9897oveq2d 6565 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(μ‘𝑛)) / (abs‘𝑛)) = ((abs‘(μ‘𝑛)) / 𝑛))
9992, 98eqtrd 2644 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑛) / 𝑛)) = ((abs‘(μ‘𝑛)) / 𝑛))
10089abscld 14023 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(μ‘𝑛)) ∈ ℝ)
101 1red 9934 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
102 mule1 24674 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (abs‘(μ‘𝑛)) ≤ 1)
1033, 102syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(μ‘𝑛)) ≤ 1)
104100, 101, 93, 103lediv1dd 11806 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(μ‘𝑛)) / 𝑛) ≤ (1 / 𝑛))
10599, 104eqbrtrd 4605 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑛) / 𝑛)) ≤ (1 / 𝑛))
106 harmonicbnd4 24537 . . . . . . . . . . . . . . 15 ((𝑥 / 𝑛) ∈ ℝ+ → (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ))) ≤ (1 / (𝑥 / 𝑛)))
10728, 106syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ))) ≤ (1 / (𝑥 / 𝑛)))
108 rpcnne0 11726 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
109108adantr 480 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
110 rpcnne0 11726 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℝ+ → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
11193, 110syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
112 recdiv 10610 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (1 / (𝑥 / 𝑛)) = (𝑛 / 𝑥))
113109, 111, 112syl2anc 691 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (1 / (𝑥 / 𝑛)) = (𝑛 / 𝑥))
114107, 113breqtrd 4609 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ))) ≤ (𝑛 / 𝑥))
11580, 81, 82, 86, 87, 88, 105, 114lemul12ad 10845 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘((μ‘𝑛) / 𝑛)) · (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))) ≤ ((1 / 𝑛) · (𝑛 / 𝑥)))
1168, 61absmuld 14041 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))) = ((abs‘((μ‘𝑛) / 𝑛)) · (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))))
117 1cnd 9935 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℂ)
118 dmdcan 10614 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℂ ∧ 𝑛 ≠ 0) ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ 1 ∈ ℂ) → ((𝑛 / 𝑥) · (1 / 𝑛)) = (1 / 𝑥))
119111, 109, 117, 118syl3anc 1318 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 / 𝑥) · (1 / 𝑛)) = (1 / 𝑥))
12085rpcnd 11750 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 / 𝑥) ∈ ℂ)
12181recnd 9947 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℂ)
122120, 121mulcomd 9940 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 / 𝑥) · (1 / 𝑛)) = ((1 / 𝑛) · (𝑛 / 𝑥)))
123119, 122eqtr3d 2646 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑥) = ((1 / 𝑛) · (𝑛 / 𝑥)))
124115, 116, 1233brtr4d 4615 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))) ≤ (1 / 𝑥))
1251, 67, 79, 124fsumle 14372 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑥))
126 hashfz1 12996 . . . . . . . . . . . . 13 ((⌊‘𝑥) ∈ ℕ0 → (#‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
12773, 126syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (#‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
128127oveq1d 6564 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → ((#‘(1...(⌊‘𝑥))) · (1 / 𝑥)) = ((⌊‘𝑥) · (1 / 𝑥)))
12977rpcnd 11750 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℂ)
130 fsumconst 14364 . . . . . . . . . . . 12 (((1...(⌊‘𝑥)) ∈ Fin ∧ (1 / 𝑥) ∈ ℂ) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑥) = ((#‘(1...(⌊‘𝑥))) · (1 / 𝑥)))
1311, 129, 130syl2anc 691 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑥) = ((#‘(1...(⌊‘𝑥))) · (1 / 𝑥)))
13273nn0cnd 11230 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ∈ ℂ)
133 rpcn 11717 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
134 rpne0 11724 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ≠ 0)
135132, 133, 134divrecd 10683 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → ((⌊‘𝑥) / 𝑥) = ((⌊‘𝑥) · (1 / 𝑥)))
136128, 131, 1353eqtr4d 2654 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑥) = ((⌊‘𝑥) / 𝑥))
137125, 136breqtrd 4609 . . . . . . . . 9 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))) ≤ ((⌊‘𝑥) / 𝑥))
138 rpre 11715 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
139 flle 12462 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (⌊‘𝑥) ≤ 𝑥)
140138, 139syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ≤ 𝑥)
141133mulid1d 9936 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 · 1) = 𝑥)
142140, 141breqtrrd 4611 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ≤ (𝑥 · 1))
143 reflcl 12459 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
144138, 143syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ∈ ℝ)
145 rpregt0 11722 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
146 ledivmul 10778 . . . . . . . . . . 11 (((⌊‘𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → (((⌊‘𝑥) / 𝑥) ≤ 1 ↔ (⌊‘𝑥) ≤ (𝑥 · 1)))
147144, 69, 145, 146syl3anc 1318 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (((⌊‘𝑥) / 𝑥) ≤ 1 ↔ (⌊‘𝑥) ≤ (𝑥 · 1)))
148142, 147mpbird 246 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((⌊‘𝑥) / 𝑥) ≤ 1)
14968, 76, 69, 137, 148letrd 10073 . . . . . . . 8 (𝑥 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))) ≤ 1)
15066, 68, 69, 70, 149letrd 10073 . . . . . . 7 (𝑥 ∈ ℝ+ → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))) ≤ 1)
151150ad2antrl 760 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))) ≤ 1)
15259, 64, 65, 65, 151elo1d 14115 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − ((log‘(𝑥 / 𝑛)) + γ)))) ∈ 𝑂(1))
15358, 152syl5eqelr 2693 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · γ))) ∈ 𝑂(1))
15434, 37, 153o1dif 14208 . . 3 (⊤ → ((𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))))) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · γ)) ∈ 𝑂(1)))
15520, 154mpbird 246 . 2 (⊤ → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))))) ∈ 𝑂(1))
156155trud 1484 1 (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(1 / 𝑚) − (log‘(𝑥 / 𝑛))))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wtru 1476  wcel 1977  wne 2780  wss 3540   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  Fincfn 7841  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  0cn0 11169  cz 11254  +crp 11708  ...cfz 12197  cfl 12453  #chash 12979  abscabs 13822  𝑂(1)co1 14065  Σcsu 14264  logclog 24105  γcem 24518  μcmu 24621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-o1 14069  df-lo1 14070  df-sum 14265  df-ef 14637  df-e 14638  df-sin 14639  df-cos 14640  df-pi 14642  df-dvds 14822  df-gcd 15055  df-prm 15224  df-pc 15380  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-em 24519  df-mu 24627
This theorem is referenced by:  mulogsum  25021
  Copyright terms: Public domain W3C validator