MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulogsumlem Structured version   Unicode version

Theorem mulogsumlem 22912
Description: Lemma for mulogsum 22913. (Contributed by Mario Carneiro, 14-May-2016.)
Assertion
Ref Expression
mulogsumlem  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  e.  O(1)
Distinct variable group:    m, n, x

Proof of Theorem mulogsumlem
StepHypRef Expression
1 fzfid 11911 . . . . . 6  |-  ( x  e.  RR+  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
2 elfznn 11594 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
32adantl 466 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
4 mucl 22611 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
mmu `  n )  e.  ZZ )
53, 4syl 16 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  ZZ )
65zred 10857 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  RR )
76, 3nndivred 10480 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  /  n )  e.  RR )
87recnd 9522 . . . . . 6  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  /  n )  e.  CC )
91, 8fsumcl 13327 . . . . 5  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  e.  CC )
109adantl 466 . . . 4  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  e.  CC )
11 emre 22531 . . . . . 6  |-  gamma  e.  RR
1211recni 9508 . . . . 5  |-  gamma  e.  CC
1312a1i 11 . . . 4  |-  ( ( T.  /\  x  e.  RR+ )  ->  gamma  e.  CC )
14 mudivsum 22911 . . . . 5  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
) )  e.  O(1)
1514a1i 11 . . . 4  |-  ( T. 
->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n ) )  e.  O(1) )
16 rpssre 11111 . . . . . 6  |-  RR+  C_  RR
17 o1const 13214 . . . . . 6  |-  ( (
RR+  C_  RR  /\  gamma  e.  CC )  ->  (
x  e.  RR+  |->  gamma )  e.  O(1) )
1816, 12, 17mp2an 672 . . . . 5  |-  ( x  e.  RR+  |->  gamma )  e.  O(1)
1918a1i 11 . . . 4  |-  ( T. 
->  ( x  e.  RR+  |->  gamma )  e.  O(1) )
2010, 13, 15, 19o1mul2 13219 . . 3  |-  ( T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
)  x.  gamma )
)  e.  O(1) )
21 fzfid 11911 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( x  /  n
) ) )  e. 
Fin )
22 elfznn 11594 . . . . . . . . . . . 12  |-  ( m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) )  ->  m  e.  NN )
2322adantl 466 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  m  e.  NN )
2423nnrecred 10477 . . . . . . . . . 10  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( 1  /  m )  e.  RR )
2521, 24fsumrecl 13328 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  e.  RR )
262nnrpd 11136 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  RR+ )
27 rpdivcl 11123 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  RR+ )  ->  (
x  /  n )  e.  RR+ )
2826, 27sylan2 474 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
2928relogcld 22204 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  e.  RR )
3025, 29resubcld 9886 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) )  e.  RR )
317, 30remulcld 9524 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  e.  RR )
321, 31fsumrecl 13328 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  e.  RR )
3332recnd 9522 . . . . 5  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  e.  CC )
3433adantl 466 . . . 4  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  e.  CC )
35 mulcl 9476 . . . . . 6  |-  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n )  e.  CC  /\  gamma  e.  CC )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n )  x.  gamma )  e.  CC )
369, 12, 35sylancl 662 . . . . 5  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  /  n )  x. 
gamma )  e.  CC )
3736adantl 466 . . . 4  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  /  n )  x. 
gamma )  e.  CC )
38 nnrecre 10468 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  (
1  /  m )  e.  RR )
3938recnd 9522 . . . . . . . . . . . 12  |-  ( m  e.  NN  ->  (
1  /  m )  e.  CC )
4023, 39syl 16 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( 1  /  m )  e.  CC )
4121, 40fsumcl 13327 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  e.  CC )
4229recnd 9522 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  e.  CC )
4341, 42subcld 9829 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) )  e.  CC )
448, 43mulcld 9516 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  e.  CC )
45 mulcl 9476 . . . . . . . . 9  |-  ( ( ( ( mmu `  n )  /  n
)  e.  CC  /\  gamma  e.  CC )  ->  (
( ( mmu `  n )  /  n
)  x.  gamma )  e.  CC )
468, 12, 45sylancl 662 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  gamma )  e.  CC )
471, 44, 46fsumsub 13372 . . . . . . 7  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( mmu `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  -  ( ( ( mmu `  n )  /  n )  x. 
gamma ) )  =  (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  gamma ) ) )
4812a1i 11 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  gamma  e.  CC )
4941, 42, 48subsub4d 9860 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  -  ( log `  (
x  /  n ) ) )  -  gamma )  =  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( ( log `  ( x  /  n ) )  +  gamma ) ) )
5049oveq2d 6215 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) )  -  gamma )
)  =  ( ( ( mmu `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( ( log `  ( x  /  n ) )  +  gamma ) ) ) )
518, 43, 48subdid 9910 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) )  -  gamma )
)  =  ( ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  -  (
( ( mmu `  n )  /  n
)  x.  gamma )
) )
5250, 51eqtr3d 2497 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( ( log `  ( x  /  n ) )  +  gamma ) ) )  =  ( ( ( ( mmu `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  -  ( ( ( mmu `  n )  /  n )  x. 
gamma ) ) )
5352sumeq2dv 13297 . . . . . . 7  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  -  (
( ( mmu `  n )  /  n
)  x.  gamma )
) )
5412a1i 11 . . . . . . . . 9  |-  ( x  e.  RR+  ->  gamma  e.  CC )
551, 54, 8fsummulc1 13369 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  /  n )  x. 
gamma )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  gamma ) )
5655oveq2d 6215 . . . . . . 7  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  x.  gamma )
)  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  gamma )
) )
5747, 53, 563eqtr4d 2505 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) )  =  (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n )  x.  gamma ) ) )
5857mpteq2ia 4481 . . . . 5  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) ) )  =  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n )  x.  gamma ) ) )
5916a1i 11 . . . . . 6  |-  ( T. 
->  RR+  C_  RR )
6042, 48addcld 9515 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  ( x  /  n ) )  + 
gamma )  e.  CC )
6141, 60subcld 9829 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
)  e.  CC )
628, 61mulcld 9516 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( ( log `  ( x  /  n ) )  +  gamma ) ) )  e.  CC )
631, 62fsumcl 13327 . . . . . . 7  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) )  e.  CC )
6463adantl 466 . . . . . 6  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) )  e.  CC )
65 1red 9511 . . . . . 6  |-  ( T. 
->  1  e.  RR )
6663abscld 13039 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) ) )  e.  RR )
6762abscld 13039 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) ) )  e.  RR )
681, 67fsumrecl 13328 . . . . . . . 8  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) ) )  e.  RR )
69 1red 9511 . . . . . . . 8  |-  ( x  e.  RR+  ->  1  e.  RR )
701, 62fsumabs 13381 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  ( ( ( mmu `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( ( log `  ( x  /  n ) )  +  gamma ) ) ) ) )
71 rprege0 11115 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <_  x ) )
72 flge0nn0 11782 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( |_ `  x
)  e.  NN0 )
7371, 72syl 16 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( |_
`  x )  e. 
NN0 )
7473nn0red 10747 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( |_
`  x )  e.  RR )
75 rerpdivcl 11128 . . . . . . . . . 10  |-  ( ( ( |_ `  x
)  e.  RR  /\  x  e.  RR+ )  -> 
( ( |_ `  x )  /  x
)  e.  RR )
7674, 75mpancom 669 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( ( |_ `  x )  /  x )  e.  RR )
77 rpreccl 11124 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  ( 1  /  x )  e.  RR+ )
7877adantr 465 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  x )  e.  RR+ )
7978rpred 11137 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  x )  e.  RR )
808abscld 13039 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( mmu `  n )  /  n
) )  e.  RR )
813nnrecred 10477 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  n )  e.  RR )
8261abscld 13039 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
)  -  ( ( log `  ( x  /  n ) )  +  gamma ) ) )  e.  RR )
83 id 22 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  x  e.  RR+ )
84 rpdivcl 11123 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  RR+  /\  x  e.  RR+ )  ->  (
n  /  x )  e.  RR+ )
8526, 83, 84syl2anr 478 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  /  x )  e.  RR+ )
8685rpred 11137 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  /  x )  e.  RR )
878absge0d 13047 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( mmu `  n )  /  n ) ) )
8861absge0d 13047 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) ) )
896recnd 9522 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  CC )
903nncnd 10448 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
913nnne0d 10476 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  =/=  0 )
9289, 90, 91absdivd 13058 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( mmu `  n )  /  n
) )  =  ( ( abs `  (
mmu `  n )
)  /  ( abs `  n ) ) )
933nnrpd 11136 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
94 rprege0 11115 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  RR+  ->  ( n  e.  RR  /\  0  <_  n ) )
9593, 94syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  e.  RR  /\  0  <_  n ) )
96 absid 12902 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  RR  /\  0  <_  n )  -> 
( abs `  n
)  =  n )
9795, 96syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  n )  =  n )
9897oveq2d 6215 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( mmu `  n ) )  / 
( abs `  n
) )  =  ( ( abs `  (
mmu `  n )
)  /  n ) )
9992, 98eqtrd 2495 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( mmu `  n )  /  n
) )  =  ( ( abs `  (
mmu `  n )
)  /  n ) )
10089abscld 13039 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( mmu `  n
) )  e.  RR )
101 1red 9511 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
102 mule1 22618 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  ( abs `  ( mmu `  n ) )  <_ 
1 )
1033, 102syl 16 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( mmu `  n
) )  <_  1
)
104100, 101, 93, 103lediv1dd 11191 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( mmu `  n ) )  /  n )  <_  (
1  /  n ) )
10599, 104eqbrtrd 4419 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( mmu `  n )  /  n
) )  <_  (
1  /  n ) )
106 harmonicbnd4 22536 . . . . . . . . . . . . . . 15  |-  ( ( x  /  n )  e.  RR+  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
)  -  ( ( log `  ( x  /  n ) )  +  gamma ) ) )  <_  ( 1  / 
( x  /  n
) ) )
10728, 106syl 16 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
)  -  ( ( log `  ( x  /  n ) )  +  gamma ) ) )  <_  ( 1  / 
( x  /  n
) ) )
108 rpcnne0 11118 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR+  ->  ( x  e.  CC  /\  x  =/=  0 ) )
109108adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  CC  /\  x  =/=  0 ) )
110 rpcnne0 11118 . . . . . . . . . . . . . . . 16  |-  ( n  e.  RR+  ->  ( n  e.  CC  /\  n  =/=  0 ) )
11193, 110syl 16 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  e.  CC  /\  n  =/=  0 ) )
112 recdiv 10147 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  CC  /\  x  =/=  0 )  /\  ( n  e.  CC  /\  n  =/=  0 ) )  -> 
( 1  /  (
x  /  n ) )  =  ( n  /  x ) )
113109, 111, 112syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  ( x  /  n ) )  =  ( n  /  x
) )
114107, 113breqtrd 4423 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
)  -  ( ( log `  ( x  /  n ) )  +  gamma ) ) )  <_  ( n  /  x ) )
11580, 81, 82, 86, 87, 88, 105, 114lemul12ad 10385 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( ( mmu `  n )  /  n
) )  x.  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( ( log `  ( x  /  n ) )  +  gamma ) ) ) )  <_  ( (
1  /  n )  x.  ( n  /  x ) ) )
1168, 61absmuld 13057 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) ) )  =  ( ( abs `  (
( mmu `  n
)  /  n ) )  x.  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
)  -  ( ( log `  ( x  /  n ) )  +  gamma ) ) ) ) )
117 1cnd 9512 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  CC )
118 dmdcan 10151 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  CC  /\  n  =/=  0 )  /\  ( x  e.  CC  /\  x  =/=  0 )  /\  1  e.  CC )  ->  (
( n  /  x
)  x.  ( 1  /  n ) )  =  ( 1  /  x ) )
119111, 109, 117, 118syl3anc 1219 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
n  /  x )  x.  ( 1  /  n ) )  =  ( 1  /  x
) )
12085rpcnd 11139 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  /  x )  e.  CC )
12181recnd 9522 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  n )  e.  CC )
122120, 121mulcomd 9517 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
n  /  x )  x.  ( 1  /  n ) )  =  ( ( 1  /  n )  x.  (
n  /  x ) ) )
123119, 122eqtr3d 2497 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  x )  =  ( ( 1  /  n )  x.  (
n  /  x ) ) )
124115, 116, 1233brtr4d 4429 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) ) )  <_ 
( 1  /  x
) )
1251, 67, 79, 124fsumle 13379 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  x ) )
126 hashfz1 12233 . . . . . . . . . . . . 13  |-  ( ( |_ `  x )  e.  NN0  ->  ( # `  ( 1 ... ( |_ `  x ) ) )  =  ( |_
`  x ) )
12773, 126syl 16 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( # `  ( 1 ... ( |_ `  x ) ) )  =  ( |_
`  x ) )
128127oveq1d 6214 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( (
# `  ( 1 ... ( |_ `  x
) ) )  x.  ( 1  /  x
) )  =  ( ( |_ `  x
)  x.  ( 1  /  x ) ) )
12977rpcnd 11139 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( 1  /  x )  e.  CC )
130 fsumconst 13374 . . . . . . . . . . . 12  |-  ( ( ( 1 ... ( |_ `  x ) )  e.  Fin  /\  (
1  /  x )  e.  CC )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  x )  =  ( ( # `  ( 1 ... ( |_ `  x ) ) )  x.  ( 1  /  x ) ) )
1311, 129, 130syl2anc 661 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  x
)  =  ( (
# `  ( 1 ... ( |_ `  x
) ) )  x.  ( 1  /  x
) ) )
13273nn0cnd 10748 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( |_
`  x )  e.  CC )
133 rpcn 11109 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  e.  CC )
134 rpne0 11116 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  =/=  0 )
135132, 133, 134divrecd 10220 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( ( |_ `  x )  /  x )  =  ( ( |_ `  x )  x.  (
1  /  x ) ) )
136128, 131, 1353eqtr4d 2505 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  x
)  =  ( ( |_ `  x )  /  x ) )
137125, 136breqtrd 4423 . . . . . . . . 9  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) ) )  <_ 
( ( |_ `  x )  /  x
) )
138 rpre 11107 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  e.  RR )
139 flle 11765 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  ( |_ `  x )  <_  x )
140138, 139syl 16 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( |_
`  x )  <_  x )
141133mulid1d 9513 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( x  x.  1 )  =  x )
142140, 141breqtrrd 4425 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( |_
`  x )  <_ 
( x  x.  1 ) )
143 reflcl 11762 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  RR )
144138, 143syl 16 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( |_
`  x )  e.  RR )
145 rpregt0 11114 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <  x ) )
146 ledivmul 10315 . . . . . . . . . . 11  |-  ( ( ( |_ `  x
)  e.  RR  /\  1  e.  RR  /\  (
x  e.  RR  /\  0  <  x ) )  ->  ( ( ( |_ `  x )  /  x )  <_ 
1  <->  ( |_ `  x )  <_  (
x  x.  1 ) ) )
147144, 69, 145, 146syl3anc 1219 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( ( ( |_ `  x
)  /  x )  <_  1  <->  ( |_ `  x )  <_  (
x  x.  1 ) ) )
148142, 147mpbird 232 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( ( |_ `  x )  /  x )  <_ 
1 )
14968, 76, 69, 137, 148letrd 9638 . . . . . . . 8  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) ) )  <_ 
1 )
15066, 68, 69, 70, 149letrd 9638 . . . . . . 7  |-  ( x  e.  RR+  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) ) )  <_ 
1 )
151150ad2antrl 727 . . . . . 6  |-  ( ( T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( ( log `  ( x  /  n ) )  +  gamma ) ) ) )  <_  1 )
15259, 64, 65, 65, 151elo1d 13131 . . . . 5  |-  ( T. 
->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) ) )  e.  O(1) )
15358, 152syl5eqelr 2547 . . . 4  |-  ( T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n )  x.  gamma ) ) )  e.  O(1) )
15434, 37, 153o1dif 13224 . . 3  |-  ( T. 
->  ( ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  e.  O(1)  <-> 
( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
)  x.  gamma )
)  e.  O(1) ) )
15520, 154mpbird 232 . 2  |-  ( T. 
->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  e.  O(1) )
156155trud 1379 1  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  e.  O(1)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1370   T. wtru 1371    e. wcel 1758    =/= wne 2647    C_ wss 3435   class class class wbr 4399    |-> cmpt 4457   ` cfv 5525  (class class class)co 6199   Fincfn 7419   CCcc 9390   RRcr 9391   0cc0 9392   1c1 9393    + caddc 9395    x. cmul 9397    < clt 9528    <_ cle 9529    - cmin 9705    / cdiv 10103   NNcn 10432   NN0cn0 10689   ZZcz 10756   RR+crp 11101   ...cfz 11553   |_cfl 11756   #chash 12219   abscabs 12840   O(1)co1 13081   sum_csu 13280   logclog 22138   gammacem 22517   mmucmu 22564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-inf2 7957  ax-cnex 9448  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468  ax-pre-mulgt0 9469  ax-pre-sup 9470  ax-addf 9471  ax-mulf 9472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rmo 2806  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-int 4236  df-iun 4280  df-iin 4281  df-disj 4370  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-se 4787  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-isom 5534  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-of 6429  df-om 6586  df-1st 6686  df-2nd 6687  df-supp 6800  df-recs 6941  df-rdg 6975  df-1o 7029  df-2o 7030  df-oadd 7033  df-er 7210  df-map 7325  df-pm 7326  df-ixp 7373  df-en 7420  df-dom 7421  df-sdom 7422  df-fin 7423  df-fsupp 7731  df-fi 7771  df-sup 7801  df-oi 7834  df-card 8219  df-cda 8447  df-pnf 9530  df-mnf 9531  df-xr 9532  df-ltxr 9533  df-le 9534  df-sub 9707  df-neg 9708  df-div 10104  df-nn 10433  df-2 10490  df-3 10491  df-4 10492  df-5 10493  df-6 10494  df-7 10495  df-8 10496  df-9 10497  df-10 10498  df-n0 10690  df-z 10757  df-dec 10866  df-uz 10972  df-q 11064  df-rp 11102  df-xneg 11199  df-xadd 11200  df-xmul 11201  df-ioo 11414  df-ioc 11415  df-ico 11416  df-icc 11417  df-fz 11554  df-fzo 11665  df-fl 11758  df-mod 11825  df-seq 11923  df-exp 11982  df-fac 12168  df-bc 12195  df-hash 12220  df-shft 12673  df-cj 12705  df-re 12706  df-im 12707  df-sqr 12841  df-abs 12842  df-limsup 13066  df-clim 13083  df-rlim 13084  df-o1 13085  df-lo1 13086  df-sum 13281  df-ef 13470  df-e 13471  df-sin 13472  df-cos 13473  df-pi 13475  df-dvds 13653  df-gcd 13808  df-prm 13881  df-pc 14021  df-struct 14293  df-ndx 14294  df-slot 14295  df-base 14296  df-sets 14297  df-ress 14298  df-plusg 14369  df-mulr 14370  df-starv 14371  df-sca 14372  df-vsca 14373  df-ip 14374  df-tset 14375  df-ple 14376  df-ds 14378  df-unif 14379  df-hom 14380  df-cco 14381  df-rest 14479  df-topn 14480  df-0g 14498  df-gsum 14499  df-topgen 14500  df-pt 14501  df-prds 14504  df-xrs 14558  df-qtop 14563  df-imas 14564  df-xps 14566  df-mre 14642  df-mrc 14643  df-acs 14645  df-mnd 15533  df-submnd 15583  df-mulg 15666  df-cntz 15953  df-cmn 16399  df-psmet 17933  df-xmet 17934  df-met 17935  df-bl 17936  df-mopn 17937  df-fbas 17938  df-fg 17939  df-cnfld 17943  df-top 18634  df-bases 18636  df-topon 18637  df-topsp 18638  df-cld 18754  df-ntr 18755  df-cls 18756  df-nei 18833  df-lp 18871  df-perf 18872  df-cn 18962  df-cnp 18963  df-haus 19050  df-tx 19266  df-hmeo 19459  df-fil 19550  df-fm 19642  df-flim 19643  df-flf 19644  df-xms 20026  df-ms 20027  df-tms 20028  df-cncf 20585  df-limc 21473  df-dv 21474  df-log 22140  df-em 22518  df-mu 22570
This theorem is referenced by:  mulogsum  22913
  Copyright terms: Public domain W3C validator