MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenlem Structured version   Visualization version   GIF version

Theorem infxpenlem 8719
Description: Lemma for infxpen 8720. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
leweon.1 𝐿 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}
r0weon.1 𝑅 = {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))}
infxpen.1 𝑄 = (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎)))
infxpen.2 (𝜑 ↔ ((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)))
infxpen.3 𝑀 = ((1st𝑤) ∪ (2nd𝑤))
infxpen.4 𝐽 = OrdIso(𝑄, (𝑎 × 𝑎))
Assertion
Ref Expression
infxpenlem ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
Distinct variable groups:   𝐴,𝑎   𝑤,𝐽   𝑧,𝑤,𝐿   𝑧,𝑚,𝑀   𝜑,𝑤,𝑧   𝑧,𝑄   𝑚,𝑎,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚,𝑎)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑚)   𝑄(𝑥,𝑦,𝑤,𝑚,𝑎)   𝑅(𝑥,𝑦,𝑧,𝑤,𝑚,𝑎)   𝐽(𝑥,𝑦,𝑧,𝑚,𝑎)   𝐿(𝑥,𝑦,𝑚,𝑎)   𝑀(𝑥,𝑦,𝑤,𝑎)

Proof of Theorem infxpenlem
StepHypRef Expression
1 sseq2 3590 . . . 4 (𝑎 = 𝑚 → (ω ⊆ 𝑎 ↔ ω ⊆ 𝑚))
2 xpeq12 5058 . . . . . 6 ((𝑎 = 𝑚𝑎 = 𝑚) → (𝑎 × 𝑎) = (𝑚 × 𝑚))
32anidms 675 . . . . 5 (𝑎 = 𝑚 → (𝑎 × 𝑎) = (𝑚 × 𝑚))
4 id 22 . . . . 5 (𝑎 = 𝑚𝑎 = 𝑚)
53, 4breq12d 4596 . . . 4 (𝑎 = 𝑚 → ((𝑎 × 𝑎) ≈ 𝑎 ↔ (𝑚 × 𝑚) ≈ 𝑚))
61, 5imbi12d 333 . . 3 (𝑎 = 𝑚 → ((ω ⊆ 𝑎 → (𝑎 × 𝑎) ≈ 𝑎) ↔ (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)))
7 sseq2 3590 . . . 4 (𝑎 = 𝐴 → (ω ⊆ 𝑎 ↔ ω ⊆ 𝐴))
8 xpeq12 5058 . . . . . 6 ((𝑎 = 𝐴𝑎 = 𝐴) → (𝑎 × 𝑎) = (𝐴 × 𝐴))
98anidms 675 . . . . 5 (𝑎 = 𝐴 → (𝑎 × 𝑎) = (𝐴 × 𝐴))
10 id 22 . . . . 5 (𝑎 = 𝐴𝑎 = 𝐴)
119, 10breq12d 4596 . . . 4 (𝑎 = 𝐴 → ((𝑎 × 𝑎) ≈ 𝑎 ↔ (𝐴 × 𝐴) ≈ 𝐴))
127, 11imbi12d 333 . . 3 (𝑎 = 𝐴 → ((ω ⊆ 𝑎 → (𝑎 × 𝑎) ≈ 𝑎) ↔ (ω ⊆ 𝐴 → (𝐴 × 𝐴) ≈ 𝐴)))
13 infxpen.2 . . . . . . . 8 (𝜑 ↔ ((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)))
14 vex 3176 . . . . . . . . . . . . 13 𝑎 ∈ V
1514, 14xpex 6860 . . . . . . . . . . . 12 (𝑎 × 𝑎) ∈ V
16 simpll 786 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) → 𝑎 ∈ On)
1713, 16sylbi 206 . . . . . . . . . . . . . . . . 17 (𝜑𝑎 ∈ On)
18 onss 6882 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ On → 𝑎 ⊆ On)
1917, 18syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑎 ⊆ On)
20 xpss12 5148 . . . . . . . . . . . . . . . 16 ((𝑎 ⊆ On ∧ 𝑎 ⊆ On) → (𝑎 × 𝑎) ⊆ (On × On))
2119, 19, 20syl2anc 691 . . . . . . . . . . . . . . 15 (𝜑 → (𝑎 × 𝑎) ⊆ (On × On))
22 leweon.1 . . . . . . . . . . . . . . . . 17 𝐿 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}
23 r0weon.1 . . . . . . . . . . . . . . . . 17 𝑅 = {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))}
2422, 23r0weon 8718 . . . . . . . . . . . . . . . 16 (𝑅 We (On × On) ∧ 𝑅 Se (On × On))
2524simpli 473 . . . . . . . . . . . . . . 15 𝑅 We (On × On)
26 wess 5025 . . . . . . . . . . . . . . 15 ((𝑎 × 𝑎) ⊆ (On × On) → (𝑅 We (On × On) → 𝑅 We (𝑎 × 𝑎)))
2721, 25, 26mpisyl 21 . . . . . . . . . . . . . 14 (𝜑𝑅 We (𝑎 × 𝑎))
28 weinxp 5109 . . . . . . . . . . . . . 14 (𝑅 We (𝑎 × 𝑎) ↔ (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) We (𝑎 × 𝑎))
2927, 28sylib 207 . . . . . . . . . . . . 13 (𝜑 → (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) We (𝑎 × 𝑎))
30 infxpen.1 . . . . . . . . . . . . . 14 𝑄 = (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎)))
31 weeq1 5026 . . . . . . . . . . . . . 14 (𝑄 = (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) → (𝑄 We (𝑎 × 𝑎) ↔ (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) We (𝑎 × 𝑎)))
3230, 31ax-mp 5 . . . . . . . . . . . . 13 (𝑄 We (𝑎 × 𝑎) ↔ (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) We (𝑎 × 𝑎))
3329, 32sylibr 223 . . . . . . . . . . . 12 (𝜑𝑄 We (𝑎 × 𝑎))
34 infxpen.4 . . . . . . . . . . . . 13 𝐽 = OrdIso(𝑄, (𝑎 × 𝑎))
3534oiiso 8325 . . . . . . . . . . . 12 (((𝑎 × 𝑎) ∈ V ∧ 𝑄 We (𝑎 × 𝑎)) → 𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)))
3615, 33, 35sylancr 694 . . . . . . . . . . 11 (𝜑𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)))
37 isof1o 6473 . . . . . . . . . . 11 (𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)) → 𝐽:dom 𝐽1-1-onto→(𝑎 × 𝑎))
38 f1ocnv 6062 . . . . . . . . . . 11 (𝐽:dom 𝐽1-1-onto→(𝑎 × 𝑎) → 𝐽:(𝑎 × 𝑎)–1-1-onto→dom 𝐽)
39 f1of1 6049 . . . . . . . . . . 11 (𝐽:(𝑎 × 𝑎)–1-1-onto→dom 𝐽𝐽:(𝑎 × 𝑎)–1-1→dom 𝐽)
4036, 37, 38, 394syl 19 . . . . . . . . . 10 (𝜑𝐽:(𝑎 × 𝑎)–1-1→dom 𝐽)
41 f1f1orn 6061 . . . . . . . . . 10 (𝐽:(𝑎 × 𝑎)–1-1→dom 𝐽𝐽:(𝑎 × 𝑎)–1-1-onto→ran 𝐽)
4215f1oen 7862 . . . . . . . . . 10 (𝐽:(𝑎 × 𝑎)–1-1-onto→ran 𝐽 → (𝑎 × 𝑎) ≈ ran 𝐽)
4340, 41, 423syl 18 . . . . . . . . 9 (𝜑 → (𝑎 × 𝑎) ≈ ran 𝐽)
44 f1ofn 6051 . . . . . . . . . . 11 (𝐽:(𝑎 × 𝑎)–1-1-onto→dom 𝐽𝐽 Fn (𝑎 × 𝑎))
4536, 37, 38, 444syl 19 . . . . . . . . . 10 (𝜑𝐽 Fn (𝑎 × 𝑎))
4636adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → 𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)))
4737, 38, 393syl 18 . . . . . . . . . . . . . . . . . 18 (𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)) → 𝐽:(𝑎 × 𝑎)–1-1→dom 𝐽)
48 cnvimass 5404 . . . . . . . . . . . . . . . . . . 19 (𝑄 “ {𝑤}) ⊆ dom 𝑄
49 inss2 3796 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) ⊆ ((𝑎 × 𝑎) × (𝑎 × 𝑎))
5030, 49eqsstri 3598 . . . . . . . . . . . . . . . . . . . . 21 𝑄 ⊆ ((𝑎 × 𝑎) × (𝑎 × 𝑎))
51 dmss 5245 . . . . . . . . . . . . . . . . . . . . 21 (𝑄 ⊆ ((𝑎 × 𝑎) × (𝑎 × 𝑎)) → dom 𝑄 ⊆ dom ((𝑎 × 𝑎) × (𝑎 × 𝑎)))
5250, 51ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 dom 𝑄 ⊆ dom ((𝑎 × 𝑎) × (𝑎 × 𝑎))
53 dmxpid 5266 . . . . . . . . . . . . . . . . . . . 20 dom ((𝑎 × 𝑎) × (𝑎 × 𝑎)) = (𝑎 × 𝑎)
5452, 53sseqtri 3600 . . . . . . . . . . . . . . . . . . 19 dom 𝑄 ⊆ (𝑎 × 𝑎)
5548, 54sstri 3577 . . . . . . . . . . . . . . . . . 18 (𝑄 “ {𝑤}) ⊆ (𝑎 × 𝑎)
56 f1ores 6064 . . . . . . . . . . . . . . . . . 18 ((𝐽:(𝑎 × 𝑎)–1-1→dom 𝐽 ∧ (𝑄 “ {𝑤}) ⊆ (𝑎 × 𝑎)) → (𝐽 ↾ (𝑄 “ {𝑤})):(𝑄 “ {𝑤})–1-1-onto→(𝐽 “ (𝑄 “ {𝑤})))
5747, 55, 56sylancl 693 . . . . . . . . . . . . . . . . 17 (𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)) → (𝐽 ↾ (𝑄 “ {𝑤})):(𝑄 “ {𝑤})–1-1-onto→(𝐽 “ (𝑄 “ {𝑤})))
5815, 15xpex 6860 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 × 𝑎) × (𝑎 × 𝑎)) ∈ V
5958inex2 4728 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) ∈ V
6030, 59eqeltri 2684 . . . . . . . . . . . . . . . . . . . 20 𝑄 ∈ V
6160cnvex 7006 . . . . . . . . . . . . . . . . . . 19 𝑄 ∈ V
6261imaex 6996 . . . . . . . . . . . . . . . . . 18 (𝑄 “ {𝑤}) ∈ V
6362f1oen 7862 . . . . . . . . . . . . . . . . 17 ((𝐽 ↾ (𝑄 “ {𝑤})):(𝑄 “ {𝑤})–1-1-onto→(𝐽 “ (𝑄 “ {𝑤})) → (𝑄 “ {𝑤}) ≈ (𝐽 “ (𝑄 “ {𝑤})))
6446, 57, 633syl 18 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝑄 “ {𝑤}) ≈ (𝐽 “ (𝑄 “ {𝑤})))
65 sseqin2 3779 . . . . . . . . . . . . . . . . . . 19 ((𝑄 “ {𝑤}) ⊆ (𝑎 × 𝑎) ↔ ((𝑎 × 𝑎) ∩ (𝑄 “ {𝑤})) = (𝑄 “ {𝑤}))
6655, 65mpbi 219 . . . . . . . . . . . . . . . . . 18 ((𝑎 × 𝑎) ∩ (𝑄 “ {𝑤})) = (𝑄 “ {𝑤})
6766imaeq2i 5383 . . . . . . . . . . . . . . . . 17 (𝐽 “ ((𝑎 × 𝑎) ∩ (𝑄 “ {𝑤}))) = (𝐽 “ (𝑄 “ {𝑤}))
68 isocnv 6480 . . . . . . . . . . . . . . . . . . . 20 (𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)) → 𝐽 Isom 𝑄, E ((𝑎 × 𝑎), dom 𝐽))
6946, 68syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → 𝐽 Isom 𝑄, E ((𝑎 × 𝑎), dom 𝐽))
70 simpr 476 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → 𝑤 ∈ (𝑎 × 𝑎))
71 isoini 6488 . . . . . . . . . . . . . . . . . . 19 ((𝐽 Isom 𝑄, E ((𝑎 × 𝑎), dom 𝐽) ∧ 𝑤 ∈ (𝑎 × 𝑎)) → (𝐽 “ ((𝑎 × 𝑎) ∩ (𝑄 “ {𝑤}))) = (dom 𝐽 ∩ ( E “ {(𝐽𝑤)})))
7269, 70, 71syl2anc 691 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽 “ ((𝑎 × 𝑎) ∩ (𝑄 “ {𝑤}))) = (dom 𝐽 ∩ ( E “ {(𝐽𝑤)})))
73 fvex 6113 . . . . . . . . . . . . . . . . . . . . 21 (𝐽𝑤) ∈ V
7473epini 5414 . . . . . . . . . . . . . . . . . . . 20 ( E “ {(𝐽𝑤)}) = (𝐽𝑤)
7574ineq2i 3773 . . . . . . . . . . . . . . . . . . 19 (dom 𝐽 ∩ ( E “ {(𝐽𝑤)})) = (dom 𝐽 ∩ (𝐽𝑤))
7634oicl 8317 . . . . . . . . . . . . . . . . . . . . 21 Ord dom 𝐽
77 f1of 6050 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽:(𝑎 × 𝑎)–1-1-onto→dom 𝐽𝐽:(𝑎 × 𝑎)⟶dom 𝐽)
7836, 37, 38, 774syl 19 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐽:(𝑎 × 𝑎)⟶dom 𝐽)
7978ffvelrnda 6267 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽𝑤) ∈ dom 𝐽)
80 ordelss 5656 . . . . . . . . . . . . . . . . . . . . 21 ((Ord dom 𝐽 ∧ (𝐽𝑤) ∈ dom 𝐽) → (𝐽𝑤) ⊆ dom 𝐽)
8176, 79, 80sylancr 694 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽𝑤) ⊆ dom 𝐽)
82 sseqin2 3779 . . . . . . . . . . . . . . . . . . . 20 ((𝐽𝑤) ⊆ dom 𝐽 ↔ (dom 𝐽 ∩ (𝐽𝑤)) = (𝐽𝑤))
8381, 82sylib 207 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (dom 𝐽 ∩ (𝐽𝑤)) = (𝐽𝑤))
8475, 83syl5eq 2656 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (dom 𝐽 ∩ ( E “ {(𝐽𝑤)})) = (𝐽𝑤))
8572, 84eqtrd 2644 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽 “ ((𝑎 × 𝑎) ∩ (𝑄 “ {𝑤}))) = (𝐽𝑤))
8667, 85syl5eqr 2658 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽 “ (𝑄 “ {𝑤})) = (𝐽𝑤))
8764, 86breqtrd 4609 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝑄 “ {𝑤}) ≈ (𝐽𝑤))
8887ensymd 7893 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽𝑤) ≈ (𝑄 “ {𝑤}))
89 infxpen.3 . . . . . . . . . . . . . . . . . . 19 𝑀 = ((1st𝑤) ∪ (2nd𝑤))
90 fvex 6113 . . . . . . . . . . . . . . . . . . . 20 (1st𝑤) ∈ V
91 fvex 6113 . . . . . . . . . . . . . . . . . . . 20 (2nd𝑤) ∈ V
9290, 91unex 6854 . . . . . . . . . . . . . . . . . . 19 ((1st𝑤) ∪ (2nd𝑤)) ∈ V
9389, 92eqeltri 2684 . . . . . . . . . . . . . . . . . 18 𝑀 ∈ V
9493sucex 6903 . . . . . . . . . . . . . . . . 17 suc 𝑀 ∈ V
9594, 94xpex 6860 . . . . . . . . . . . . . . . 16 (suc 𝑀 × suc 𝑀) ∈ V
96 xpss 5149 . . . . . . . . . . . . . . . . . . . 20 (𝑎 × 𝑎) ⊆ (V × V)
97 simp3 1056 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → 𝑧 ∈ (𝑄 “ {𝑤}))
98 vex 3176 . . . . . . . . . . . . . . . . . . . . . . 23 𝑤 ∈ V
99 vex 3176 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑧 ∈ V
10099eliniseg 5413 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ V → (𝑧 ∈ (𝑄 “ {𝑤}) ↔ 𝑧𝑄𝑤))
10198, 100ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ (𝑄 “ {𝑤}) ↔ 𝑧𝑄𝑤)
10297, 101sylib 207 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → 𝑧𝑄𝑤)
10330breqi 4589 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧𝑄𝑤𝑧(𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎)))𝑤)
104 brin 4634 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧(𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎)))𝑤 ↔ (𝑧𝑅𝑤𝑧((𝑎 × 𝑎) × (𝑎 × 𝑎))𝑤))
105103, 104bitri 263 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧𝑄𝑤 ↔ (𝑧𝑅𝑤𝑧((𝑎 × 𝑎) × (𝑎 × 𝑎))𝑤))
106105simprbi 479 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝑄𝑤𝑧((𝑎 × 𝑎) × (𝑎 × 𝑎))𝑤)
107 brxp 5071 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧((𝑎 × 𝑎) × (𝑎 × 𝑎))𝑤 ↔ (𝑧 ∈ (𝑎 × 𝑎) ∧ 𝑤 ∈ (𝑎 × 𝑎)))
108107simplbi 475 . . . . . . . . . . . . . . . . . . . . 21 (𝑧((𝑎 × 𝑎) × (𝑎 × 𝑎))𝑤𝑧 ∈ (𝑎 × 𝑎))
109102, 106, 1083syl 18 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → 𝑧 ∈ (𝑎 × 𝑎))
11096, 109sseldi 3566 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → 𝑧 ∈ (V × V))
11117adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → 𝑎 ∈ On)
1121113adant3 1074 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → 𝑎 ∈ On)
113 xp1st 7089 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ (𝑎 × 𝑎) → (1st𝑧) ∈ 𝑎)
114 onelon 5665 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ On ∧ (1st𝑧) ∈ 𝑎) → (1st𝑧) ∈ On)
115113, 114sylan2 490 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ On ∧ 𝑧 ∈ (𝑎 × 𝑎)) → (1st𝑧) ∈ On)
116112, 109, 115syl2anc 691 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → (1st𝑧) ∈ On)
117 eloni 5650 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 ∈ On → Ord 𝑎)
118 elxp7 7092 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∈ (𝑎 × 𝑎) ↔ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝑎 ∧ (2nd𝑤) ∈ 𝑎)))
119118simprbi 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 ∈ (𝑎 × 𝑎) → ((1st𝑤) ∈ 𝑎 ∧ (2nd𝑤) ∈ 𝑎))
120 ordunel 6919 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Ord 𝑎 ∧ (1st𝑤) ∈ 𝑎 ∧ (2nd𝑤) ∈ 𝑎) → ((1st𝑤) ∪ (2nd𝑤)) ∈ 𝑎)
1211203expib 1260 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (Ord 𝑎 → (((1st𝑤) ∈ 𝑎 ∧ (2nd𝑤) ∈ 𝑎) → ((1st𝑤) ∪ (2nd𝑤)) ∈ 𝑎))
122117, 119, 121syl2im 39 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ On → (𝑤 ∈ (𝑎 × 𝑎) → ((1st𝑤) ∪ (2nd𝑤)) ∈ 𝑎))
123111, 70, 122sylc 63 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → ((1st𝑤) ∪ (2nd𝑤)) ∈ 𝑎)
12489, 123syl5eqel 2692 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → 𝑀𝑎)
125 simprr 792 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) → ∀𝑚𝑎 𝑚𝑎)
12613, 125sylbi 206 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ∀𝑚𝑎 𝑚𝑎)
127 simprl 790 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) → ω ⊆ 𝑎)
12813, 127sylbi 206 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ω ⊆ 𝑎)
129 iscard 8684 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((card‘𝑎) = 𝑎 ↔ (𝑎 ∈ On ∧ ∀𝑚𝑎 𝑚𝑎))
130 cardlim 8681 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (ω ⊆ (card‘𝑎) ↔ Lim (card‘𝑎))
131 sseq2 3590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((card‘𝑎) = 𝑎 → (ω ⊆ (card‘𝑎) ↔ ω ⊆ 𝑎))
132 limeq 5652 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((card‘𝑎) = 𝑎 → (Lim (card‘𝑎) ↔ Lim 𝑎))
133131, 132bibi12d 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((card‘𝑎) = 𝑎 → ((ω ⊆ (card‘𝑎) ↔ Lim (card‘𝑎)) ↔ (ω ⊆ 𝑎 ↔ Lim 𝑎)))
134130, 133mpbii 222 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((card‘𝑎) = 𝑎 → (ω ⊆ 𝑎 ↔ Lim 𝑎))
135129, 134sylbir 224 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ On ∧ ∀𝑚𝑎 𝑚𝑎) → (ω ⊆ 𝑎 ↔ Lim 𝑎))
136135biimpa 500 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑎 ∈ On ∧ ∀𝑚𝑎 𝑚𝑎) ∧ ω ⊆ 𝑎) → Lim 𝑎)
13717, 126, 128, 136syl21anc 1317 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → Lim 𝑎)
138137adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → Lim 𝑎)
139 limsuc 6941 . . . . . . . . . . . . . . . . . . . . . . . 24 (Lim 𝑎 → (𝑀𝑎 ↔ suc 𝑀𝑎))
140138, 139syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝑀𝑎 ↔ suc 𝑀𝑎))
141124, 140mpbid 221 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → suc 𝑀𝑎)
142 onelon 5665 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ On ∧ suc 𝑀𝑎) → suc 𝑀 ∈ On)
14317, 141, 142syl2an2r 872 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → suc 𝑀 ∈ On)
1441433adant3 1074 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → suc 𝑀 ∈ On)
145 ssun1 3738 . . . . . . . . . . . . . . . . . . . . 21 (1st𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧))
146145a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → (1st𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧)))
147105simplbi 475 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝑄𝑤𝑧𝑅𝑤)
148 df-br 4584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧𝑅𝑤 ↔ ⟨𝑧, 𝑤⟩ ∈ 𝑅)
14923eleq2i 2680 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⟨𝑧, 𝑤⟩ ∈ 𝑅 ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))})
150 opabid 4907 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))} ↔ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤))))
151148, 149, 1503bitri 285 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧𝑅𝑤 ↔ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤))))
152151simprbi 479 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧𝑅𝑤 → (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))
153 simpl 472 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤) → ((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)))
154153orim2i 539 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)) → (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ ((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤))))
155152, 154syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧𝑅𝑤 → (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ ((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤))))
156 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1st𝑧) ∈ V
157 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2nd𝑧) ∈ V
158156, 157unex 6854 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1st𝑧) ∪ (2nd𝑧)) ∈ V
159158elsuc 5711 . . . . . . . . . . . . . . . . . . . . . . 23 (((1st𝑧) ∪ (2nd𝑧)) ∈ suc ((1st𝑤) ∪ (2nd𝑤)) ↔ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ ((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤))))
160155, 159sylibr 223 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧𝑅𝑤 → ((1st𝑧) ∪ (2nd𝑧)) ∈ suc ((1st𝑤) ∪ (2nd𝑤)))
161 suceq 5707 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 = ((1st𝑤) ∪ (2nd𝑤)) → suc 𝑀 = suc ((1st𝑤) ∪ (2nd𝑤)))
16289, 161ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 suc 𝑀 = suc ((1st𝑤) ∪ (2nd𝑤))
163160, 162syl6eleqr 2699 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝑅𝑤 → ((1st𝑧) ∪ (2nd𝑧)) ∈ suc 𝑀)
164102, 147, 1633syl 18 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → ((1st𝑧) ∪ (2nd𝑧)) ∈ suc 𝑀)
165 ontr2 5689 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑧) ∈ On ∧ suc 𝑀 ∈ On) → (((1st𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧)) ∧ ((1st𝑧) ∪ (2nd𝑧)) ∈ suc 𝑀) → (1st𝑧) ∈ suc 𝑀))
166165imp 444 . . . . . . . . . . . . . . . . . . . 20 ((((1st𝑧) ∈ On ∧ suc 𝑀 ∈ On) ∧ ((1st𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧)) ∧ ((1st𝑧) ∪ (2nd𝑧)) ∈ suc 𝑀)) → (1st𝑧) ∈ suc 𝑀)
167116, 144, 146, 164, 166syl22anc 1319 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → (1st𝑧) ∈ suc 𝑀)
168 xp2nd 7090 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ (𝑎 × 𝑎) → (2nd𝑧) ∈ 𝑎)
169 onelon 5665 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ On ∧ (2nd𝑧) ∈ 𝑎) → (2nd𝑧) ∈ On)
170168, 169sylan2 490 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ On ∧ 𝑧 ∈ (𝑎 × 𝑎)) → (2nd𝑧) ∈ On)
171112, 109, 170syl2anc 691 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → (2nd𝑧) ∈ On)
172 ssun2 3739 . . . . . . . . . . . . . . . . . . . . 21 (2nd𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧))
173172a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → (2nd𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧)))
174 ontr2 5689 . . . . . . . . . . . . . . . . . . . . 21 (((2nd𝑧) ∈ On ∧ suc 𝑀 ∈ On) → (((2nd𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧)) ∧ ((1st𝑧) ∪ (2nd𝑧)) ∈ suc 𝑀) → (2nd𝑧) ∈ suc 𝑀))
175174imp 444 . . . . . . . . . . . . . . . . . . . 20 ((((2nd𝑧) ∈ On ∧ suc 𝑀 ∈ On) ∧ ((2nd𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧)) ∧ ((1st𝑧) ∪ (2nd𝑧)) ∈ suc 𝑀)) → (2nd𝑧) ∈ suc 𝑀)
176171, 144, 173, 164, 175syl22anc 1319 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → (2nd𝑧) ∈ suc 𝑀)
177 elxp7 7092 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (suc 𝑀 × suc 𝑀) ↔ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ suc 𝑀 ∧ (2nd𝑧) ∈ suc 𝑀)))
178177biimpri 217 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ suc 𝑀 ∧ (2nd𝑧) ∈ suc 𝑀)) → 𝑧 ∈ (suc 𝑀 × suc 𝑀))
179110, 167, 176, 178syl12anc 1316 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → 𝑧 ∈ (suc 𝑀 × suc 𝑀))
1801793expia 1259 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝑧 ∈ (𝑄 “ {𝑤}) → 𝑧 ∈ (suc 𝑀 × suc 𝑀)))
181180ssrdv 3574 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝑄 “ {𝑤}) ⊆ (suc 𝑀 × suc 𝑀))
182 ssdomg 7887 . . . . . . . . . . . . . . . 16 ((suc 𝑀 × suc 𝑀) ∈ V → ((𝑄 “ {𝑤}) ⊆ (suc 𝑀 × suc 𝑀) → (𝑄 “ {𝑤}) ≼ (suc 𝑀 × suc 𝑀)))
18395, 181, 182mpsyl 66 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝑄 “ {𝑤}) ≼ (suc 𝑀 × suc 𝑀))
184128adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → ω ⊆ 𝑎)
185 nnfi 8038 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑀 ∈ ω → suc 𝑀 ∈ Fin)
186 xpfi 8116 . . . . . . . . . . . . . . . . . . . . . 22 ((suc 𝑀 ∈ Fin ∧ suc 𝑀 ∈ Fin) → (suc 𝑀 × suc 𝑀) ∈ Fin)
187186anidms 675 . . . . . . . . . . . . . . . . . . . . 21 (suc 𝑀 ∈ Fin → (suc 𝑀 × suc 𝑀) ∈ Fin)
188 isfinite 8432 . . . . . . . . . . . . . . . . . . . . 21 ((suc 𝑀 × suc 𝑀) ∈ Fin ↔ (suc 𝑀 × suc 𝑀) ≺ ω)
189187, 188sylib 207 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑀 ∈ Fin → (suc 𝑀 × suc 𝑀) ≺ ω)
190185, 189syl 17 . . . . . . . . . . . . . . . . . . 19 (suc 𝑀 ∈ ω → (suc 𝑀 × suc 𝑀) ≺ ω)
191 ssdomg 7887 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ V → (ω ⊆ 𝑎 → ω ≼ 𝑎))
19214, 191ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (ω ⊆ 𝑎 → ω ≼ 𝑎)
193 sdomdomtr 7978 . . . . . . . . . . . . . . . . . . 19 (((suc 𝑀 × suc 𝑀) ≺ ω ∧ ω ≼ 𝑎) → (suc 𝑀 × suc 𝑀) ≺ 𝑎)
194190, 192, 193syl2an 493 . . . . . . . . . . . . . . . . . 18 ((suc 𝑀 ∈ ω ∧ ω ⊆ 𝑎) → (suc 𝑀 × suc 𝑀) ≺ 𝑎)
195194expcom 450 . . . . . . . . . . . . . . . . 17 (ω ⊆ 𝑎 → (suc 𝑀 ∈ ω → (suc 𝑀 × suc 𝑀) ≺ 𝑎))
196184, 195syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (suc 𝑀 ∈ ω → (suc 𝑀 × suc 𝑀) ≺ 𝑎))
197126adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → ∀𝑚𝑎 𝑚𝑎)
198 breq1 4586 . . . . . . . . . . . . . . . . . . 19 (𝑚 = suc 𝑀 → (𝑚𝑎 ↔ suc 𝑀𝑎))
199198rspccv 3279 . . . . . . . . . . . . . . . . . 18 (∀𝑚𝑎 𝑚𝑎 → (suc 𝑀𝑎 → suc 𝑀𝑎))
200197, 141, 199sylc 63 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → suc 𝑀𝑎)
201 omelon 8426 . . . . . . . . . . . . . . . . . . 19 ω ∈ On
202 ontri1 5674 . . . . . . . . . . . . . . . . . . 19 ((ω ∈ On ∧ suc 𝑀 ∈ On) → (ω ⊆ suc 𝑀 ↔ ¬ suc 𝑀 ∈ ω))
203201, 143, 202sylancr 694 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (ω ⊆ suc 𝑀 ↔ ¬ suc 𝑀 ∈ ω))
204 simplr 788 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) → ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚))
20513, 204sylbi 206 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚))
206205adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚))
207 sseq2 3590 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = suc 𝑀 → (ω ⊆ 𝑚 ↔ ω ⊆ suc 𝑀))
208 xpeq12 5058 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 = suc 𝑀𝑚 = suc 𝑀) → (𝑚 × 𝑚) = (suc 𝑀 × suc 𝑀))
209208anidms 675 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = suc 𝑀 → (𝑚 × 𝑚) = (suc 𝑀 × suc 𝑀))
210 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = suc 𝑀𝑚 = suc 𝑀)
211209, 210breq12d 4596 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = suc 𝑀 → ((𝑚 × 𝑚) ≈ 𝑚 ↔ (suc 𝑀 × suc 𝑀) ≈ suc 𝑀))
212207, 211imbi12d 333 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = suc 𝑀 → ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ↔ (ω ⊆ suc 𝑀 → (suc 𝑀 × suc 𝑀) ≈ suc 𝑀)))
213212rspccv 3279 . . . . . . . . . . . . . . . . . . 19 (∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) → (suc 𝑀𝑎 → (ω ⊆ suc 𝑀 → (suc 𝑀 × suc 𝑀) ≈ suc 𝑀)))
214206, 141, 213sylc 63 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (ω ⊆ suc 𝑀 → (suc 𝑀 × suc 𝑀) ≈ suc 𝑀))
215203, 214sylbird 249 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (¬ suc 𝑀 ∈ ω → (suc 𝑀 × suc 𝑀) ≈ suc 𝑀))
216 ensdomtr 7981 . . . . . . . . . . . . . . . . . 18 (((suc 𝑀 × suc 𝑀) ≈ suc 𝑀 ∧ suc 𝑀𝑎) → (suc 𝑀 × suc 𝑀) ≺ 𝑎)
217216expcom 450 . . . . . . . . . . . . . . . . 17 (suc 𝑀𝑎 → ((suc 𝑀 × suc 𝑀) ≈ suc 𝑀 → (suc 𝑀 × suc 𝑀) ≺ 𝑎))
218200, 215, 217sylsyld 59 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (¬ suc 𝑀 ∈ ω → (suc 𝑀 × suc 𝑀) ≺ 𝑎))
219196, 218pm2.61d 169 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (suc 𝑀 × suc 𝑀) ≺ 𝑎)
220 domsdomtr 7980 . . . . . . . . . . . . . . 15 (((𝑄 “ {𝑤}) ≼ (suc 𝑀 × suc 𝑀) ∧ (suc 𝑀 × suc 𝑀) ≺ 𝑎) → (𝑄 “ {𝑤}) ≺ 𝑎)
221183, 219, 220syl2anc 691 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝑄 “ {𝑤}) ≺ 𝑎)
222 ensdomtr 7981 . . . . . . . . . . . . . 14 (((𝐽𝑤) ≈ (𝑄 “ {𝑤}) ∧ (𝑄 “ {𝑤}) ≺ 𝑎) → (𝐽𝑤) ≺ 𝑎)
22388, 221, 222syl2anc 691 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽𝑤) ≺ 𝑎)
224 ordelon 5664 . . . . . . . . . . . . . . 15 ((Ord dom 𝐽 ∧ (𝐽𝑤) ∈ dom 𝐽) → (𝐽𝑤) ∈ On)
22576, 79, 224sylancr 694 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽𝑤) ∈ On)
226 onenon 8658 . . . . . . . . . . . . . . 15 (𝑎 ∈ On → 𝑎 ∈ dom card)
227111, 226syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → 𝑎 ∈ dom card)
228 cardsdomel 8683 . . . . . . . . . . . . . 14 (((𝐽𝑤) ∈ On ∧ 𝑎 ∈ dom card) → ((𝐽𝑤) ≺ 𝑎 ↔ (𝐽𝑤) ∈ (card‘𝑎)))
229225, 227, 228syl2anc 691 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → ((𝐽𝑤) ≺ 𝑎 ↔ (𝐽𝑤) ∈ (card‘𝑎)))
230223, 229mpbid 221 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽𝑤) ∈ (card‘𝑎))
231 eleq2 2677 . . . . . . . . . . . . . 14 ((card‘𝑎) = 𝑎 → ((𝐽𝑤) ∈ (card‘𝑎) ↔ (𝐽𝑤) ∈ 𝑎))
232129, 231sylbir 224 . . . . . . . . . . . . 13 ((𝑎 ∈ On ∧ ∀𝑚𝑎 𝑚𝑎) → ((𝐽𝑤) ∈ (card‘𝑎) ↔ (𝐽𝑤) ∈ 𝑎))
23317, 197, 232syl2an2r 872 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → ((𝐽𝑤) ∈ (card‘𝑎) ↔ (𝐽𝑤) ∈ 𝑎))
234230, 233mpbid 221 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽𝑤) ∈ 𝑎)
235234ralrimiva 2949 . . . . . . . . . 10 (𝜑 → ∀𝑤 ∈ (𝑎 × 𝑎)(𝐽𝑤) ∈ 𝑎)
236 fnfvrnss 6297 . . . . . . . . . . 11 ((𝐽 Fn (𝑎 × 𝑎) ∧ ∀𝑤 ∈ (𝑎 × 𝑎)(𝐽𝑤) ∈ 𝑎) → ran 𝐽𝑎)
237 ssdomg 7887 . . . . . . . . . . 11 (𝑎 ∈ V → (ran 𝐽𝑎 → ran 𝐽𝑎))
23814, 236, 237mpsyl 66 . . . . . . . . . 10 ((𝐽 Fn (𝑎 × 𝑎) ∧ ∀𝑤 ∈ (𝑎 × 𝑎)(𝐽𝑤) ∈ 𝑎) → ran 𝐽𝑎)
23945, 235, 238syl2anc 691 . . . . . . . . 9 (𝜑 → ran 𝐽𝑎)
240 endomtr 7900 . . . . . . . . 9 (((𝑎 × 𝑎) ≈ ran 𝐽 ∧ ran 𝐽𝑎) → (𝑎 × 𝑎) ≼ 𝑎)
24143, 239, 240syl2anc 691 . . . . . . . 8 (𝜑 → (𝑎 × 𝑎) ≼ 𝑎)
24213, 241sylbir 224 . . . . . . 7 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) → (𝑎 × 𝑎) ≼ 𝑎)
243 df1o2 7459 . . . . . . . . . . . 12 1𝑜 = {∅}
244 1onn 7606 . . . . . . . . . . . 12 1𝑜 ∈ ω
245243, 244eqeltrri 2685 . . . . . . . . . . 11 {∅} ∈ ω
246 nnsdom 8434 . . . . . . . . . . 11 ({∅} ∈ ω → {∅} ≺ ω)
247 sdomdom 7869 . . . . . . . . . . 11 ({∅} ≺ ω → {∅} ≼ ω)
248245, 246, 247mp2b 10 . . . . . . . . . 10 {∅} ≼ ω
249 domtr 7895 . . . . . . . . . 10 (({∅} ≼ ω ∧ ω ≼ 𝑎) → {∅} ≼ 𝑎)
250248, 192, 249sylancr 694 . . . . . . . . 9 (ω ⊆ 𝑎 → {∅} ≼ 𝑎)
251 0ex 4718 . . . . . . . . . . . 12 ∅ ∈ V
25214, 251xpsnen 7929 . . . . . . . . . . 11 (𝑎 × {∅}) ≈ 𝑎
253252ensymi 7892 . . . . . . . . . 10 𝑎 ≈ (𝑎 × {∅})
25414xpdom2 7940 . . . . . . . . . 10 ({∅} ≼ 𝑎 → (𝑎 × {∅}) ≼ (𝑎 × 𝑎))
255 endomtr 7900 . . . . . . . . . 10 ((𝑎 ≈ (𝑎 × {∅}) ∧ (𝑎 × {∅}) ≼ (𝑎 × 𝑎)) → 𝑎 ≼ (𝑎 × 𝑎))
256253, 254, 255sylancr 694 . . . . . . . . 9 ({∅} ≼ 𝑎𝑎 ≼ (𝑎 × 𝑎))
257250, 256syl 17 . . . . . . . 8 (ω ⊆ 𝑎𝑎 ≼ (𝑎 × 𝑎))
258257ad2antrl 760 . . . . . . 7 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) → 𝑎 ≼ (𝑎 × 𝑎))
259 sbth 7965 . . . . . . 7 (((𝑎 × 𝑎) ≼ 𝑎𝑎 ≼ (𝑎 × 𝑎)) → (𝑎 × 𝑎) ≈ 𝑎)
260242, 258, 259syl2anc 691 . . . . . 6 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) → (𝑎 × 𝑎) ≈ 𝑎)
261260expr 641 . . . . 5 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ ω ⊆ 𝑎) → (∀𝑚𝑎 𝑚𝑎 → (𝑎 × 𝑎) ≈ 𝑎))
262 simplr 788 . . . . . . . 8 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚))
263 simpll 786 . . . . . . . . 9 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → 𝑎 ∈ On)
264 simprr 792 . . . . . . . . 9 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → ¬ ∀𝑚𝑎 𝑚𝑎)
265 rexnal 2978 . . . . . . . . . 10 (∃𝑚𝑎 ¬ 𝑚𝑎 ↔ ¬ ∀𝑚𝑎 𝑚𝑎)
266 onelss 5683 . . . . . . . . . . . . 13 (𝑎 ∈ On → (𝑚𝑎𝑚𝑎))
267 ssdomg 7887 . . . . . . . . . . . . 13 (𝑎 ∈ On → (𝑚𝑎𝑚𝑎))
268266, 267syld 46 . . . . . . . . . . . 12 (𝑎 ∈ On → (𝑚𝑎𝑚𝑎))
269 bren2 7872 . . . . . . . . . . . . 13 (𝑚𝑎 ↔ (𝑚𝑎 ∧ ¬ 𝑚𝑎))
270269simplbi2 653 . . . . . . . . . . . 12 (𝑚𝑎 → (¬ 𝑚𝑎𝑚𝑎))
271268, 270syl6 34 . . . . . . . . . . 11 (𝑎 ∈ On → (𝑚𝑎 → (¬ 𝑚𝑎𝑚𝑎)))
272271reximdvai 2998 . . . . . . . . . 10 (𝑎 ∈ On → (∃𝑚𝑎 ¬ 𝑚𝑎 → ∃𝑚𝑎 𝑚𝑎))
273265, 272syl5bir 232 . . . . . . . . 9 (𝑎 ∈ On → (¬ ∀𝑚𝑎 𝑚𝑎 → ∃𝑚𝑎 𝑚𝑎))
274263, 264, 273sylc 63 . . . . . . . 8 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → ∃𝑚𝑎 𝑚𝑎)
275 r19.29 3054 . . . . . . . 8 ((∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ ∃𝑚𝑎 𝑚𝑎) → ∃𝑚𝑎 ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎))
276262, 274, 275syl2anc 691 . . . . . . 7 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → ∃𝑚𝑎 ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎))
277 simprl 790 . . . . . . . 8 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → ω ⊆ 𝑎)
278 onelon 5665 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ On ∧ 𝑚𝑎) → 𝑚 ∈ On)
279 ensym 7891 . . . . . . . . . . . . . . . . . 18 (𝑚𝑎𝑎𝑚)
280 domentr 7901 . . . . . . . . . . . . . . . . . 18 ((ω ≼ 𝑎𝑎𝑚) → ω ≼ 𝑚)
281192, 279, 280syl2an 493 . . . . . . . . . . . . . . . . 17 ((ω ⊆ 𝑎𝑚𝑎) → ω ≼ 𝑚)
282 domnsym 7971 . . . . . . . . . . . . . . . . . . 19 (ω ≼ 𝑚 → ¬ 𝑚 ≺ ω)
283 nnsdom 8434 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ω → 𝑚 ≺ ω)
284282, 283nsyl 134 . . . . . . . . . . . . . . . . . 18 (ω ≼ 𝑚 → ¬ 𝑚 ∈ ω)
285 ontri1 5674 . . . . . . . . . . . . . . . . . . 19 ((ω ∈ On ∧ 𝑚 ∈ On) → (ω ⊆ 𝑚 ↔ ¬ 𝑚 ∈ ω))
286201, 285mpan 702 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ On → (ω ⊆ 𝑚 ↔ ¬ 𝑚 ∈ ω))
287284, 286syl5ibr 235 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ On → (ω ≼ 𝑚 → ω ⊆ 𝑚))
288278, 281, 287syl2im 39 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ On ∧ 𝑚𝑎) → ((ω ⊆ 𝑎𝑚𝑎) → ω ⊆ 𝑚))
289288expd 451 . . . . . . . . . . . . . . 15 ((𝑎 ∈ On ∧ 𝑚𝑎) → (ω ⊆ 𝑎 → (𝑚𝑎 → ω ⊆ 𝑚)))
290289impcom 445 . . . . . . . . . . . . . 14 ((ω ⊆ 𝑎 ∧ (𝑎 ∈ On ∧ 𝑚𝑎)) → (𝑚𝑎 → ω ⊆ 𝑚))
291290imim1d 80 . . . . . . . . . . . . 13 ((ω ⊆ 𝑎 ∧ (𝑎 ∈ On ∧ 𝑚𝑎)) → ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) → (𝑚𝑎 → (𝑚 × 𝑚) ≈ 𝑚)))
292291imp32 448 . . . . . . . . . . . 12 (((ω ⊆ 𝑎 ∧ (𝑎 ∈ On ∧ 𝑚𝑎)) ∧ ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎)) → (𝑚 × 𝑚) ≈ 𝑚)
293 entr 7894 . . . . . . . . . . . . . . . 16 (((𝑚 × 𝑚) ≈ 𝑚𝑚𝑎) → (𝑚 × 𝑚) ≈ 𝑎)
294293ancoms 468 . . . . . . . . . . . . . . 15 ((𝑚𝑎 ∧ (𝑚 × 𝑚) ≈ 𝑚) → (𝑚 × 𝑚) ≈ 𝑎)
295 xpen 8008 . . . . . . . . . . . . . . . . 17 ((𝑎𝑚𝑎𝑚) → (𝑎 × 𝑎) ≈ (𝑚 × 𝑚))
296295anidms 675 . . . . . . . . . . . . . . . 16 (𝑎𝑚 → (𝑎 × 𝑎) ≈ (𝑚 × 𝑚))
297 entr 7894 . . . . . . . . . . . . . . . 16 (((𝑎 × 𝑎) ≈ (𝑚 × 𝑚) ∧ (𝑚 × 𝑚) ≈ 𝑎) → (𝑎 × 𝑎) ≈ 𝑎)
298296, 297sylan 487 . . . . . . . . . . . . . . 15 ((𝑎𝑚 ∧ (𝑚 × 𝑚) ≈ 𝑎) → (𝑎 × 𝑎) ≈ 𝑎)
299279, 294, 298syl2an2r 872 . . . . . . . . . . . . . 14 ((𝑚𝑎 ∧ (𝑚 × 𝑚) ≈ 𝑚) → (𝑎 × 𝑎) ≈ 𝑎)
300299ex 449 . . . . . . . . . . . . 13 (𝑚𝑎 → ((𝑚 × 𝑚) ≈ 𝑚 → (𝑎 × 𝑎) ≈ 𝑎))
301300ad2antll 761 . . . . . . . . . . . 12 (((ω ⊆ 𝑎 ∧ (𝑎 ∈ On ∧ 𝑚𝑎)) ∧ ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎)) → ((𝑚 × 𝑚) ≈ 𝑚 → (𝑎 × 𝑎) ≈ 𝑎))
302292, 301mpd 15 . . . . . . . . . . 11 (((ω ⊆ 𝑎 ∧ (𝑎 ∈ On ∧ 𝑚𝑎)) ∧ ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎)) → (𝑎 × 𝑎) ≈ 𝑎)
303302ex 449 . . . . . . . . . 10 ((ω ⊆ 𝑎 ∧ (𝑎 ∈ On ∧ 𝑚𝑎)) → (((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎) → (𝑎 × 𝑎) ≈ 𝑎))
304303expr 641 . . . . . . . . 9 ((ω ⊆ 𝑎𝑎 ∈ On) → (𝑚𝑎 → (((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎) → (𝑎 × 𝑎) ≈ 𝑎)))
305304rexlimdv 3012 . . . . . . . 8 ((ω ⊆ 𝑎𝑎 ∈ On) → (∃𝑚𝑎 ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎) → (𝑎 × 𝑎) ≈ 𝑎))
306277, 263, 305syl2anc 691 . . . . . . 7 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → (∃𝑚𝑎 ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎) → (𝑎 × 𝑎) ≈ 𝑎))
307276, 306mpd 15 . . . . . 6 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → (𝑎 × 𝑎) ≈ 𝑎)
308307expr 641 . . . . 5 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ ω ⊆ 𝑎) → (¬ ∀𝑚𝑎 𝑚𝑎 → (𝑎 × 𝑎) ≈ 𝑎))
309261, 308pm2.61d 169 . . . 4 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ ω ⊆ 𝑎) → (𝑎 × 𝑎) ≈ 𝑎)
310309exp31 628 . . 3 (𝑎 ∈ On → (∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) → (ω ⊆ 𝑎 → (𝑎 × 𝑎) ≈ 𝑎)))
3116, 12, 310tfis3 6949 . 2 (𝐴 ∈ On → (ω ⊆ 𝐴 → (𝐴 × 𝐴) ≈ 𝐴))
312311imp 444 1 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  cun 3538  cin 3539  wss 3540  c0 3874  {csn 4125  cop 4131   class class class wbr 4583  {copab 4642   E cep 4947   Se wse 4995   We wwe 4996   × cxp 5036  ccnv 5037  dom cdm 5038  ran crn 5039  cres 5040  cima 5041  Ord word 5639  Oncon0 5640  Lim wlim 5641  suc csuc 5642   Fn wfn 5799  wf 5800  1-1wf1 5801  1-1-ontowf1o 5803  cfv 5804   Isom wiso 5805  ωcom 6957  1st c1st 7057  2nd c2nd 7058  1𝑜c1o 7440  cen 7838  cdom 7839  csdm 7840  Fincfn 7841  OrdIsocoi 8297  cardccrd 8644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-oi 8298  df-card 8648
This theorem is referenced by:  infxpen  8720
  Copyright terms: Public domain W3C validator