Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wess Structured version   Visualization version   GIF version

Theorem wess 5025
 Description: Subset theorem for the well-ordering predicate. Exercise 4 of [TakeutiZaring] p. 31. (Contributed by NM, 19-Apr-1994.)
Assertion
Ref Expression
wess (𝐴𝐵 → (𝑅 We 𝐵𝑅 We 𝐴))

Proof of Theorem wess
StepHypRef Expression
1 frss 5005 . . 3 (𝐴𝐵 → (𝑅 Fr 𝐵𝑅 Fr 𝐴))
2 soss 4977 . . 3 (𝐴𝐵 → (𝑅 Or 𝐵𝑅 Or 𝐴))
31, 2anim12d 584 . 2 (𝐴𝐵 → ((𝑅 Fr 𝐵𝑅 Or 𝐵) → (𝑅 Fr 𝐴𝑅 Or 𝐴)))
4 df-we 4999 . 2 (𝑅 We 𝐵 ↔ (𝑅 Fr 𝐵𝑅 Or 𝐵))
5 df-we 4999 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
63, 4, 53imtr4g 284 1 (𝐴𝐵 → (𝑅 We 𝐵𝑅 We 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ⊆ wss 3540   Or wor 4958   Fr wfr 4994   We wwe 4996 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-ral 2901  df-in 3547  df-ss 3554  df-po 4959  df-so 4960  df-fr 4997  df-we 4999 This theorem is referenced by:  wefrc  5032  trssord  5657  ordelord  5662  omsinds  6976  fnwelem  7179  wfrlem5  7306  dfrecs3  7356  ordtypelem8  8313  oismo  8328  cantnfcl  8447  infxpenlem  8719  ac10ct  8740  dfac12lem2  8849  cflim2  8968  cofsmo  8974  hsmexlem1  9131  smobeth  9287  canthwelem  9351  gruina  9519  ltwefz  12624  welb  32701  dnwech  36636  aomclem4  36645  dfac11  36650  onfrALTlem3  37780  onfrALTlem3VD  38145
 Copyright terms: Public domain W3C validator