MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenlem Unicode version

Theorem infxpenlem 7851
Description: Lemma for infxpen 7852. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
leweon.1  |-  L  =  { <. x ,  y
>.  |  ( (
x  e.  ( On 
X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x
)  e.  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  e.  ( 2nd `  y
) ) ) ) }
r0weon.1  |-  R  =  { <. z ,  w >.  |  ( ( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  (
( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) ) ) }
infxpen.1  |-  Q  =  ( R  i^i  (
( a  X.  a
)  X.  ( a  X.  a ) ) )
infxpen.2  |-  ( ph  <->  ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  A. m  e.  a  m  ~<  a ) ) )
infxpen.3  |-  M  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) )
infxpen.4  |-  J  = OrdIso
( Q ,  ( a  X.  a ) )
Assertion
Ref Expression
infxpenlem  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( A  X.  A )  ~~  A )
Distinct variable groups:    A, a    w, J    z, w, L   
z, m, M    ph, w, z    z, Q    m, a, w, x, y, z
Allowed substitution hints:    ph( x, y, m, a)    A( x, y, z, w, m)    Q( x, y, w, m, a)    R( x, y, z, w, m, a)    J( x, y, z, m, a)    L( x, y, m, a)    M( x, y, w, a)

Proof of Theorem infxpenlem
StepHypRef Expression
1 sseq2 3330 . . . 4  |-  ( a  =  m  ->  ( om  C_  a  <->  om  C_  m
) )
2 xpeq12 4856 . . . . . 6  |-  ( ( a  =  m  /\  a  =  m )  ->  ( a  X.  a
)  =  ( m  X.  m ) )
32anidms 627 . . . . 5  |-  ( a  =  m  ->  (
a  X.  a )  =  ( m  X.  m ) )
4 id 20 . . . . 5  |-  ( a  =  m  ->  a  =  m )
53, 4breq12d 4185 . . . 4  |-  ( a  =  m  ->  (
( a  X.  a
)  ~~  a  <->  ( m  X.  m )  ~~  m
) )
61, 5imbi12d 312 . . 3  |-  ( a  =  m  ->  (
( om  C_  a  ->  ( a  X.  a
)  ~~  a )  <->  ( om  C_  m  ->  ( m  X.  m ) 
~~  m ) ) )
7 sseq2 3330 . . . 4  |-  ( a  =  A  ->  ( om  C_  a  <->  om  C_  A
) )
8 xpeq12 4856 . . . . . 6  |-  ( ( a  =  A  /\  a  =  A )  ->  ( a  X.  a
)  =  ( A  X.  A ) )
98anidms 627 . . . . 5  |-  ( a  =  A  ->  (
a  X.  a )  =  ( A  X.  A ) )
10 id 20 . . . . 5  |-  ( a  =  A  ->  a  =  A )
119, 10breq12d 4185 . . . 4  |-  ( a  =  A  ->  (
( a  X.  a
)  ~~  a  <->  ( A  X.  A )  ~~  A
) )
127, 11imbi12d 312 . . 3  |-  ( a  =  A  ->  (
( om  C_  a  ->  ( a  X.  a
)  ~~  a )  <->  ( om  C_  A  ->  ( A  X.  A ) 
~~  A ) ) )
13 infxpen.2 . . . . . . . 8  |-  ( ph  <->  ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  A. m  e.  a  m  ~<  a ) ) )
14 vex 2919 . . . . . . . . . . . . . 14  |-  a  e. 
_V
1514, 14xpex 4949 . . . . . . . . . . . . 13  |-  ( a  X.  a )  e. 
_V
16 simpll 731 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  A. m  e.  a  m  ~<  a ) )  ->  a  e.  On )
1713, 16sylbi 188 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  a  e.  On )
18 onss 4730 . . . . . . . . . . . . . . . . . 18  |-  ( a  e.  On  ->  a  C_  On )
1917, 18syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  a  C_  On )
20 xpss12 4940 . . . . . . . . . . . . . . . . 17  |-  ( ( a  C_  On  /\  a  C_  On )  ->  (
a  X.  a ) 
C_  ( On  X.  On ) )
2119, 19, 20syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( a  X.  a
)  C_  ( On  X.  On ) )
22 leweon.1 . . . . . . . . . . . . . . . . . 18  |-  L  =  { <. x ,  y
>.  |  ( (
x  e.  ( On 
X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x
)  e.  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  e.  ( 2nd `  y
) ) ) ) }
23 r0weon.1 . . . . . . . . . . . . . . . . . 18  |-  R  =  { <. z ,  w >.  |  ( ( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  (
( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) ) ) }
2422, 23r0weon 7850 . . . . . . . . . . . . . . . . 17  |-  ( R  We  ( On  X.  On )  /\  R Se  ( On  X.  On ) )
2524simpli 445 . . . . . . . . . . . . . . . 16  |-  R  We  ( On  X.  On )
26 wess 4529 . . . . . . . . . . . . . . . 16  |-  ( ( a  X.  a ) 
C_  ( On  X.  On )  ->  ( R  We  ( On  X.  On )  ->  R  We  ( a  X.  a
) ) )
2721, 25, 26ee10 1382 . . . . . . . . . . . . . . 15  |-  ( ph  ->  R  We  ( a  X.  a ) )
28 weinxp 4904 . . . . . . . . . . . . . . 15  |-  ( R  We  ( a  X.  a )  <->  ( R  i^i  ( ( a  X.  a )  X.  (
a  X.  a ) ) )  We  (
a  X.  a ) )
2927, 28sylib 189 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( R  i^i  (
( a  X.  a
)  X.  ( a  X.  a ) ) )  We  ( a  X.  a ) )
30 infxpen.1 . . . . . . . . . . . . . . 15  |-  Q  =  ( R  i^i  (
( a  X.  a
)  X.  ( a  X.  a ) ) )
31 weeq1 4530 . . . . . . . . . . . . . . 15  |-  ( Q  =  ( R  i^i  ( ( a  X.  a )  X.  (
a  X.  a ) ) )  ->  ( Q  We  ( a  X.  a )  <->  ( R  i^i  ( ( a  X.  a )  X.  (
a  X.  a ) ) )  We  (
a  X.  a ) ) )
3230, 31ax-mp 8 . . . . . . . . . . . . . 14  |-  ( Q  We  ( a  X.  a )  <->  ( R  i^i  ( ( a  X.  a )  X.  (
a  X.  a ) ) )  We  (
a  X.  a ) )
3329, 32sylibr 204 . . . . . . . . . . . . 13  |-  ( ph  ->  Q  We  ( a  X.  a ) )
34 infxpen.4 . . . . . . . . . . . . . 14  |-  J  = OrdIso
( Q ,  ( a  X.  a ) )
3534oiiso 7462 . . . . . . . . . . . . 13  |-  ( ( ( a  X.  a
)  e.  _V  /\  Q  We  ( a  X.  a ) )  ->  J  Isom  _E  ,  Q  ( dom  J ,  ( a  X.  a ) ) )
3615, 33, 35sylancr 645 . . . . . . . . . . . 12  |-  ( ph  ->  J  Isom  _E  ,  Q  ( dom  J ,  ( a  X.  a ) ) )
37 isof1o 6004 . . . . . . . . . . . 12  |-  ( J 
Isom  _E  ,  Q  ( dom  J ,  ( a  X.  a ) )  ->  J : dom  J -1-1-onto-> ( a  X.  a
) )
3836, 37syl 16 . . . . . . . . . . 11  |-  ( ph  ->  J : dom  J -1-1-onto-> (
a  X.  a ) )
39 f1ocnv 5646 . . . . . . . . . . 11  |-  ( J : dom  J -1-1-onto-> ( a  X.  a )  ->  `' J : ( a  X.  a ) -1-1-onto-> dom  J
)
40 f1of1 5632 . . . . . . . . . . 11  |-  ( `' J : ( a  X.  a ) -1-1-onto-> dom  J  ->  `' J : ( a  X.  a ) -1-1-> dom  J )
4138, 39, 403syl 19 . . . . . . . . . 10  |-  ( ph  ->  `' J : ( a  X.  a ) -1-1-> dom  J )
42 f1f1orn 5644 . . . . . . . . . 10  |-  ( `' J : ( a  X.  a ) -1-1-> dom  J  ->  `' J :
( a  X.  a
)
-1-1-onto-> ran  `' J )
4315f1oen 7087 . . . . . . . . . 10  |-  ( `' J : ( a  X.  a ) -1-1-onto-> ran  `' J  ->  ( a  X.  a )  ~~  ran  `' J )
4441, 42, 433syl 19 . . . . . . . . 9  |-  ( ph  ->  ( a  X.  a
)  ~~  ran  `' J
)
45 f1ofn 5634 . . . . . . . . . . 11  |-  ( `' J : ( a  X.  a ) -1-1-onto-> dom  J  ->  `' J  Fn  (
a  X.  a ) )
4638, 39, 453syl 19 . . . . . . . . . 10  |-  ( ph  ->  `' J  Fn  (
a  X.  a ) )
4736adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  J  Isom  _E  ,  Q  ( dom  J ,  ( a  X.  a ) ) )
4837, 39, 403syl 19 . . . . . . . . . . . . . . . . . 18  |-  ( J 
Isom  _E  ,  Q  ( dom  J ,  ( a  X.  a ) )  ->  `' J : ( a  X.  a ) -1-1-> dom  J
)
49 cnvimass 5183 . . . . . . . . . . . . . . . . . . 19  |-  ( `' Q " { w } )  C_  dom  Q
50 inss2 3522 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( R  i^i  ( ( a  X.  a )  X.  ( a  X.  a
) ) )  C_  ( ( a  X.  a )  X.  (
a  X.  a ) )
5130, 50eqsstri 3338 . . . . . . . . . . . . . . . . . . . . 21  |-  Q  C_  ( ( a  X.  a )  X.  (
a  X.  a ) )
52 dmss 5028 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Q 
C_  ( ( a  X.  a )  X.  ( a  X.  a
) )  ->  dom  Q 
C_  dom  ( (
a  X.  a )  X.  ( a  X.  a ) ) )
5351, 52ax-mp 8 . . . . . . . . . . . . . . . . . . . 20  |-  dom  Q  C_ 
dom  ( ( a  X.  a )  X.  ( a  X.  a
) )
54 dmxpid 5048 . . . . . . . . . . . . . . . . . . . 20  |-  dom  (
( a  X.  a
)  X.  ( a  X.  a ) )  =  ( a  X.  a )
5553, 54sseqtri 3340 . . . . . . . . . . . . . . . . . . 19  |-  dom  Q  C_  ( a  X.  a
)
5649, 55sstri 3317 . . . . . . . . . . . . . . . . . 18  |-  ( `' Q " { w } )  C_  (
a  X.  a )
57 f1ores 5648 . . . . . . . . . . . . . . . . . 18  |-  ( ( `' J : ( a  X.  a ) -1-1-> dom  J  /\  ( `' Q " { w } ) 
C_  ( a  X.  a ) )  -> 
( `' J  |`  ( `' Q " { w } ) ) : ( `' Q " { w } ) -1-1-onto-> ( `' J " ( `' Q " { w } ) ) )
5848, 56, 57sylancl 644 . . . . . . . . . . . . . . . . 17  |-  ( J 
Isom  _E  ,  Q  ( dom  J ,  ( a  X.  a ) )  ->  ( `' J  |`  ( `' Q " { w } ) ) : ( `' Q " { w } ) -1-1-onto-> ( `' J "
( `' Q " { w } ) ) )
5915, 15xpex 4949 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( a  X.  a )  X.  ( a  X.  a ) )  e. 
_V
6059inex2 4305 . . . . . . . . . . . . . . . . . . . . 21  |-  ( R  i^i  ( ( a  X.  a )  X.  ( a  X.  a
) ) )  e. 
_V
6130, 60eqeltri 2474 . . . . . . . . . . . . . . . . . . . 20  |-  Q  e. 
_V
6261cnvex 5365 . . . . . . . . . . . . . . . . . . 19  |-  `' Q  e.  _V
63 imaexg 5176 . . . . . . . . . . . . . . . . . . 19  |-  ( `' Q  e.  _V  ->  ( `' Q " { w } )  e.  _V )
6462, 63ax-mp 8 . . . . . . . . . . . . . . . . . 18  |-  ( `' Q " { w } )  e.  _V
6564f1oen 7087 . . . . . . . . . . . . . . . . 17  |-  ( ( `' J  |`  ( `' Q " { w } ) ) : ( `' Q " { w } ) -1-1-onto-> ( `' J " ( `' Q " { w } ) )  -> 
( `' Q " { w } ) 
~~  ( `' J " ( `' Q " { w } ) ) )
6647, 58, 653syl 19 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' Q " { w } )  ~~  ( `' J " ( `' Q " { w } ) ) )
67 sseqin2 3520 . . . . . . . . . . . . . . . . . . 19  |-  ( ( `' Q " { w } )  C_  (
a  X.  a )  <-> 
( ( a  X.  a )  i^i  ( `' Q " { w } ) )  =  ( `' Q " { w } ) )
6856, 67mpbi 200 . . . . . . . . . . . . . . . . . 18  |-  ( ( a  X.  a )  i^i  ( `' Q " { w } ) )  =  ( `' Q " { w } )
6968imaeq2i 5160 . . . . . . . . . . . . . . . . 17  |-  ( `' J " ( ( a  X.  a )  i^i  ( `' Q " { w } ) ) )  =  ( `' J " ( `' Q " { w } ) )
70 isocnv 6009 . . . . . . . . . . . . . . . . . . . 20  |-  ( J 
Isom  _E  ,  Q  ( dom  J ,  ( a  X.  a ) )  ->  `' J  Isom  Q ,  _E  (
( a  X.  a
) ,  dom  J
) )
7147, 70syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  `' J  Isom  Q ,  _E  ( ( a  X.  a ) ,  dom  J ) )
72 simpr 448 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  w  e.  ( a  X.  a
) )
73 isoini 6017 . . . . . . . . . . . . . . . . . . 19  |-  ( ( `' J  Isom  Q ,  _E  ( ( a  X.  a ) ,  dom  J )  /\  w  e.  ( a  X.  a
) )  ->  ( `' J " ( ( a  X.  a )  i^i  ( `' Q " { w } ) ) )  =  ( dom  J  i^i  ( `'  _E  " { ( `' J `  w ) } ) ) )
7471, 72, 73syl2anc 643 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' J " ( ( a  X.  a )  i^i  ( `' Q " { w } ) ) )  =  ( dom  J  i^i  ( `'  _E  " { ( `' J `  w ) } ) ) )
75 fvex 5701 . . . . . . . . . . . . . . . . . . . . 21  |-  ( `' J `  w )  e.  _V
7675epini 5193 . . . . . . . . . . . . . . . . . . . 20  |-  ( `'  _E  " { ( `' J `  w ) } )  =  ( `' J `  w )
7776ineq2i 3499 . . . . . . . . . . . . . . . . . . 19  |-  ( dom 
J  i^i  ( `'  _E  " { ( `' J `  w ) } ) )  =  ( dom  J  i^i  ( `' J `  w ) )
7834oicl 7454 . . . . . . . . . . . . . . . . . . . . 21  |-  Ord  dom  J
7937, 39syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( J 
Isom  _E  ,  Q  ( dom  J ,  ( a  X.  a ) )  ->  `' J : ( a  X.  a ) -1-1-onto-> dom  J )
80 f1of 5633 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( `' J : ( a  X.  a ) -1-1-onto-> dom  J  ->  `' J : ( a  X.  a ) --> dom 
J )
8136, 79, 803syl 19 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  `' J : ( a  X.  a ) --> dom 
J )
8281ffvelrnda 5829 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' J `  w )  e.  dom  J )
83 ordelss 4557 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( Ord  dom  J  /\  ( `' J `  w )  e.  dom  J )  ->  ( `' J `  w )  C_  dom  J )
8478, 82, 83sylancr 645 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' J `  w ) 
C_  dom  J )
85 dfss1 3505 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( `' J `  w ) 
C_  dom  J  <->  ( dom  J  i^i  ( `' J `  w ) )  =  ( `' J `  w ) )
8684, 85sylib 189 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( dom  J  i^i  ( `' J `  w ) )  =  ( `' J `  w ) )
8777, 86syl5eq 2448 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( dom  J  i^i  ( `'  _E  " { ( `' J `  w ) } ) )  =  ( `' J `  w ) )
8874, 87eqtrd 2436 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' J " ( ( a  X.  a )  i^i  ( `' Q " { w } ) ) )  =  ( `' J `  w ) )
8969, 88syl5eqr 2450 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' J " ( `' Q " { w } ) )  =  ( `' J `  w ) )
9066, 89breqtrd 4196 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' Q " { w } )  ~~  ( `' J `  w ) )
9190ensymd 7117 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' J `  w ) 
~~  ( `' Q " { w } ) )
92 infxpen.3 . . . . . . . . . . . . . . . . . . 19  |-  M  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) )
93 fvex 5701 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1st `  w )  e.  _V
94 fvex 5701 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2nd `  w )  e.  _V
9593, 94unex 4666 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1st `  w )  u.  ( 2nd `  w
) )  e.  _V
9692, 95eqeltri 2474 . . . . . . . . . . . . . . . . . 18  |-  M  e. 
_V
9796sucex 4750 . . . . . . . . . . . . . . . . 17  |-  suc  M  e.  _V
9897, 97xpex 4949 . . . . . . . . . . . . . . . 16  |-  ( suc 
M  X.  suc  M
)  e.  _V
99 xpss 4941 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  X.  a )  C_  ( _V  X.  _V )
100 simp3 959 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
z  e.  ( `' Q " { w } ) )
101 vex 2919 . . . . . . . . . . . . . . . . . . . . . . 23  |-  w  e. 
_V
102 vex 2919 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  z  e. 
_V
103102eliniseg 5192 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  e.  _V  ->  (
z  e.  ( `' Q " { w } )  <->  z Q w ) )
104101, 103ax-mp 8 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  ( `' Q " { w } )  <-> 
z Q w )
105100, 104sylib 189 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
z Q w )
10630breqi 4178 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z Q w  <->  z ( R  i^i  ( ( a  X.  a )  X.  ( a  X.  a
) ) ) w )
107 brin 4219 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z ( R  i^i  (
( a  X.  a
)  X.  ( a  X.  a ) ) ) w  <->  ( z R w  /\  z
( ( a  X.  a )  X.  (
a  X.  a ) ) w ) )
108106, 107bitri 241 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z Q w  <->  ( z R w  /\  z
( ( a  X.  a )  X.  (
a  X.  a ) ) w ) )
109108simprbi 451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z Q w  ->  z
( ( a  X.  a )  X.  (
a  X.  a ) ) w )
110 brxp 4868 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z ( ( a  X.  a )  X.  (
a  X.  a ) ) w  <->  ( z  e.  ( a  X.  a
)  /\  w  e.  ( a  X.  a
) ) )
111110simplbi 447 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z ( ( a  X.  a )  X.  (
a  X.  a ) ) w  ->  z  e.  ( a  X.  a
) )
112105, 109, 1113syl 19 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
z  e.  ( a  X.  a ) )
11399, 112sseldi 3306 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
z  e.  ( _V 
X.  _V ) )
11417adantr 452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  a  e.  On )
1151143adant3 977 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
a  e.  On )
116 xp1st 6335 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  ( a  X.  a )  ->  ( 1st `  z )  e.  a )
117 onelon 4566 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( a  e.  On  /\  ( 1st `  z )  e.  a )  -> 
( 1st `  z
)  e.  On )
118116, 117sylan2 461 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( a  e.  On  /\  z  e.  ( a  X.  a ) )  -> 
( 1st `  z
)  e.  On )
119115, 112, 118syl2anc 643 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
( 1st `  z
)  e.  On )
120 eloni 4551 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( a  e.  On  ->  Ord  a )
121 elxp7 6338 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( w  e.  ( a  X.  a )  <->  ( w  e.  ( _V  X.  _V )  /\  ( ( 1st `  w )  e.  a  /\  ( 2nd `  w
)  e.  a ) ) )
122121simprbi 451 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( w  e.  ( a  X.  a )  ->  (
( 1st `  w
)  e.  a  /\  ( 2nd `  w )  e.  a ) )
123 ordunel 4766 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( Ord  a  /\  ( 1st `  w )  e.  a  /\  ( 2nd `  w )  e.  a )  ->  ( ( 1st `  w )  u.  ( 2nd `  w
) )  e.  a )
1241233expib 1156 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( Ord  a  ->  ( (
( 1st `  w
)  e.  a  /\  ( 2nd `  w )  e.  a )  -> 
( ( 1st `  w
)  u.  ( 2nd `  w ) )  e.  a ) )
125120, 122, 124syl2im 36 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( a  e.  On  ->  (
w  e.  ( a  X.  a )  -> 
( ( 1st `  w
)  u.  ( 2nd `  w ) )  e.  a ) )
126114, 72, 125sylc 58 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  (
( 1st `  w
)  u.  ( 2nd `  w ) )  e.  a )
12792, 126syl5eqel 2488 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  M  e.  a )
128 simprr 734 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  A. m  e.  a  m  ~<  a ) )  ->  A. m  e.  a  m  ~<  a )
12913, 128sylbi 188 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  A. m  e.  a  m  ~<  a )
130 simprl 733 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  A. m  e.  a  m  ~<  a ) )  ->  om  C_  a
)
13113, 130sylbi 188 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  om  C_  a )
132 iscard 7818 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
card `  a )  =  a  <->  ( a  e.  On  /\  A. m  e.  a  m  ~<  a ) )
133 cardlim 7815 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( om  C_  ( card `  a
)  <->  Lim  ( card `  a
) )
134 sseq2 3330 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
card `  a )  =  a  ->  ( om  C_  ( card `  a
)  <->  om  C_  a )
)
135 limeq 4553 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
card `  a )  =  a  ->  ( Lim  ( card `  a
)  <->  Lim  a ) )
136134, 135bibi12d 313 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
card `  a )  =  a  ->  ( ( om  C_  ( card `  a )  <->  Lim  ( card `  a ) )  <->  ( om  C_  a  <->  Lim  a ) ) )
137133, 136mpbii 203 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
card `  a )  =  a  ->  ( om  C_  a  <->  Lim  a ) )
138132, 137sylbir 205 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( a  e.  On  /\  A. m  e.  a  m 
~<  a )  ->  ( om  C_  a  <->  Lim  a ) )
139138biimpa 471 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  m  ~<  a )  /\  om  C_  a )  ->  Lim  a )
14017, 129, 131, 139syl21anc 1183 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  Lim  a )
141140adantr 452 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  Lim  a )
142 limsuc 4788 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( Lim  a  ->  ( M  e.  a  <->  suc  M  e.  a ) )
143141, 142syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( M  e.  a  <->  suc  M  e.  a ) )
144127, 143mpbid 202 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  suc  M  e.  a )
145 onelon 4566 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( a  e.  On  /\  suc  M  e.  a )  ->  suc  M  e.  On )
146114, 144, 145syl2anc 643 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  suc  M  e.  On )
1471463adant3 977 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  ->  suc  M  e.  On )
148 ssun1 3470 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 1st `  z )  C_  (
( 1st `  z
)  u.  ( 2nd `  z ) )
149148a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
( 1st `  z
)  C_  ( ( 1st `  z )  u.  ( 2nd `  z
) ) )
150108simplbi 447 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z Q w  ->  z R w )
151 df-br 4173 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( z R w  <->  <. z ,  w >.  e.  R
)
15223eleq2i 2468 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( <.
z ,  w >.  e.  R  <->  <. z ,  w >.  e.  { <. z ,  w >.  |  (
( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  ( ( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) ) ) } )
153 opabid 4421 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( <.
z ,  w >.  e. 
{ <. z ,  w >.  |  ( ( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  (
( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) ) ) }  <-> 
( ( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  ( ( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) ) ) )
154151, 152, 1533bitri 263 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( z R w  <->  ( (
z  e.  ( On 
X.  On )  /\  w  e.  ( On  X.  On ) )  /\  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w )  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z
) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  /\  z L w ) ) ) )
155154simprbi 451 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( z R w  ->  (
( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) ) )
156 simpl 444 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( 1st `  z
)  u.  ( 2nd `  z ) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  /\  z L w )  -> 
( ( 1st `  z
)  u.  ( 2nd `  z ) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) )
157156orim2i 505 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) )  ->  (
( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( 1st `  z
)  u.  ( 2nd `  z ) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) ) )
158155, 157syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z R w  ->  (
( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( 1st `  z
)  u.  ( 2nd `  z ) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) ) )
159 fvex 5701 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( 1st `  z )  e.  _V
160 fvex 5701 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( 2nd `  z )  e.  _V
161159, 160unex 4666 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 1st `  z )  u.  ( 2nd `  z
) )  e.  _V
162161elsuc 4610 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( 1st `  z
)  u.  ( 2nd `  z ) )  e. 
suc  ( ( 1st `  w )  u.  ( 2nd `  w ) )  <-> 
( ( ( 1st `  z )  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w )  u.  ( 2nd `  w ) )  \/  ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) ) ) )
163158, 162sylibr 204 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z R w  ->  (
( 1st `  z
)  u.  ( 2nd `  z ) )  e. 
suc  ( ( 1st `  w )  u.  ( 2nd `  w ) ) )
164 suceq 4606 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( M  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  ->  suc  M  =  suc  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) )
16592, 164ax-mp 8 . . . . . . . . . . . . . . . . . . . . . 22  |-  suc  M  =  suc  ( ( 1st `  w )  u.  ( 2nd `  w ) )
166163, 165syl6eleqr 2495 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z R w  ->  (
( 1st `  z
)  u.  ( 2nd `  z ) )  e. 
suc  M )
167105, 150, 1663syl 19 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
( ( 1st `  z
)  u.  ( 2nd `  z ) )  e. 
suc  M )
168 ontr2 4588 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( 1st `  z
)  e.  On  /\  suc  M  e.  On )  ->  ( ( ( 1st `  z ) 
C_  ( ( 1st `  z )  u.  ( 2nd `  z ) )  /\  ( ( 1st `  z )  u.  ( 2nd `  z ) )  e.  suc  M )  ->  ( 1st `  z
)  e.  suc  M
) )
169168imp 419 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( 1st `  z
)  e.  On  /\  suc  M  e.  On )  /\  ( ( 1st `  z )  C_  (
( 1st `  z
)  u.  ( 2nd `  z ) )  /\  ( ( 1st `  z
)  u.  ( 2nd `  z ) )  e. 
suc  M ) )  ->  ( 1st `  z
)  e.  suc  M
)
170119, 147, 149, 167, 169syl22anc 1185 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
( 1st `  z
)  e.  suc  M
)
171 xp2nd 6336 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  ( a  X.  a )  ->  ( 2nd `  z )  e.  a )
172 onelon 4566 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( a  e.  On  /\  ( 2nd `  z )  e.  a )  -> 
( 2nd `  z
)  e.  On )
173171, 172sylan2 461 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( a  e.  On  /\  z  e.  ( a  X.  a ) )  -> 
( 2nd `  z
)  e.  On )
174115, 112, 173syl2anc 643 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
( 2nd `  z
)  e.  On )
175 ssun2 3471 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 2nd `  z )  C_  (
( 1st `  z
)  u.  ( 2nd `  z ) )
176175a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
( 2nd `  z
)  C_  ( ( 1st `  z )  u.  ( 2nd `  z
) ) )
177 ontr2 4588 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( 2nd `  z
)  e.  On  /\  suc  M  e.  On )  ->  ( ( ( 2nd `  z ) 
C_  ( ( 1st `  z )  u.  ( 2nd `  z ) )  /\  ( ( 1st `  z )  u.  ( 2nd `  z ) )  e.  suc  M )  ->  ( 2nd `  z
)  e.  suc  M
) )
178177imp 419 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( 2nd `  z
)  e.  On  /\  suc  M  e.  On )  /\  ( ( 2nd `  z )  C_  (
( 1st `  z
)  u.  ( 2nd `  z ) )  /\  ( ( 1st `  z
)  u.  ( 2nd `  z ) )  e. 
suc  M ) )  ->  ( 2nd `  z
)  e.  suc  M
)
179174, 147, 176, 167, 178syl22anc 1185 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
( 2nd `  z
)  e.  suc  M
)
180 elxp7 6338 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  ( suc  M  X.  suc  M )  <->  ( z  e.  ( _V  X.  _V )  /\  ( ( 1st `  z )  e.  suc  M  /\  ( 2nd `  z
)  e.  suc  M
) ) )
181180biimpri 198 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  ( _V 
X.  _V )  /\  (
( 1st `  z
)  e.  suc  M  /\  ( 2nd `  z
)  e.  suc  M
) )  ->  z  e.  ( suc  M  X.  suc  M ) )
182113, 170, 179, 181syl12anc 1182 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
z  e.  ( suc 
M  X.  suc  M
) )
1831823expia 1155 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  (
z  e.  ( `' Q " { w } )  ->  z  e.  ( suc  M  X.  suc  M ) ) )
184183ssrdv 3314 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' Q " { w } )  C_  ( suc  M  X.  suc  M
) )
185 ssdomg 7112 . . . . . . . . . . . . . . . 16  |-  ( ( suc  M  X.  suc  M )  e.  _V  ->  ( ( `' Q " { w } ) 
C_  ( suc  M  X.  suc  M )  -> 
( `' Q " { w } )  ~<_  ( suc  M  X.  suc  M ) ) )
18698, 184, 185mpsyl 61 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' Q " { w } )  ~<_  ( suc 
M  X.  suc  M
) )
187131adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  om  C_  a
)
188 nnfi 7258 . . . . . . . . . . . . . . . . . . . 20  |-  ( suc 
M  e.  om  ->  suc 
M  e.  Fin )
189 xpfi 7337 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( suc  M  e.  Fin  /\ 
suc  M  e.  Fin )  ->  ( suc  M  X.  suc  M )  e. 
Fin )
190189anidms 627 . . . . . . . . . . . . . . . . . . . . 21  |-  ( suc 
M  e.  Fin  ->  ( suc  M  X.  suc  M )  e.  Fin )
191 isfinite 7563 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( suc  M  X.  suc  M )  e.  Fin  <->  ( suc  M  X.  suc  M ) 
~<  om )
192190, 191sylib 189 . . . . . . . . . . . . . . . . . . . 20  |-  ( suc 
M  e.  Fin  ->  ( suc  M  X.  suc  M )  ~<  om )
193188, 192syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( suc 
M  e.  om  ->  ( suc  M  X.  suc  M )  ~<  om )
194 ssdomg 7112 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  e.  _V  ->  ( om  C_  a  ->  om  ~<_  a ) )
19514, 194ax-mp 8 . . . . . . . . . . . . . . . . . . 19  |-  ( om  C_  a  ->  om  ~<_  a )
196 sdomdomtr 7199 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( suc  M  X.  suc  M )  ~<  om  /\  om  ~<_  a )  ->  ( suc  M  X.  suc  M
)  ~<  a )
197193, 195, 196syl2an 464 . . . . . . . . . . . . . . . . . 18  |-  ( ( suc  M  e.  om  /\ 
om  C_  a )  -> 
( suc  M  X.  suc  M )  ~<  a
)
198197expcom 425 . . . . . . . . . . . . . . . . 17  |-  ( om  C_  a  ->  ( suc 
M  e.  om  ->  ( suc  M  X.  suc  M )  ~<  a )
)
199187, 198syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( suc  M  e.  om  ->  ( suc  M  X.  suc  M )  ~<  a )
)
200129adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  A. m  e.  a  m  ~<  a )
201 breq1 4175 . . . . . . . . . . . . . . . . . . 19  |-  ( m  =  suc  M  -> 
( m  ~<  a  <->  suc 
M  ~<  a ) )
202201rspccv 3009 . . . . . . . . . . . . . . . . . 18  |-  ( A. m  e.  a  m  ~<  a  ->  ( suc  M  e.  a  ->  suc  M 
~<  a ) )
203200, 144, 202sylc 58 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  suc  M 
~<  a )
204 omelon 7557 . . . . . . . . . . . . . . . . . . 19  |-  om  e.  On
205 ontri1 4575 . . . . . . . . . . . . . . . . . . 19  |-  ( ( om  e.  On  /\  suc  M  e.  On )  ->  ( om  C_  suc  M  <->  -.  suc  M  e.  om ) )
206204, 146, 205sylancr 645 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( om  C_  suc  M  <->  -.  suc  M  e.  om ) )
207 simplr 732 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  A. m  e.  a  m  ~<  a ) )  ->  A. m  e.  a  ( om  C_  m  ->  ( m  X.  m )  ~~  m
) )
20813, 207sylbi 188 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)
209208adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  A. m  e.  a  ( om  C_  m  ->  ( m  X.  m )  ~~  m
) )
210 sseq2 3330 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  =  suc  M  -> 
( om  C_  m  <->  om  C_  suc  M ) )
211 xpeq12 4856 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( m  =  suc  M  /\  m  =  suc  M )  ->  ( m  X.  m )  =  ( suc  M  X.  suc  M ) )
212211anidms 627 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  =  suc  M  -> 
( m  X.  m
)  =  ( suc 
M  X.  suc  M
) )
213 id 20 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  =  suc  M  ->  m  =  suc  M )
214212, 213breq12d 4185 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  =  suc  M  -> 
( ( m  X.  m )  ~~  m  <->  ( suc  M  X.  suc  M )  ~~  suc  M
) )
215210, 214imbi12d 312 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  =  suc  M  -> 
( ( om  C_  m  ->  ( m  X.  m
)  ~~  m )  <->  ( om  C_  suc  M  -> 
( suc  M  X.  suc  M )  ~~  suc  M ) ) )
216215rspccv 3009 . . . . . . . . . . . . . . . . . . 19  |-  ( A. m  e.  a  ( om  C_  m  ->  (
m  X.  m ) 
~~  m )  -> 
( suc  M  e.  a  ->  ( om  C_  suc  M  ->  ( suc  M  X.  suc  M )  ~~  suc  M ) ) )
217209, 144, 216sylc 58 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( om  C_  suc  M  -> 
( suc  M  X.  suc  M )  ~~  suc  M ) )
218206, 217sylbird 227 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( -.  suc  M  e.  om  ->  ( suc  M  X.  suc  M )  ~~  suc  M ) )
219 ensdomtr 7202 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( suc  M  X.  suc  M )  ~~  suc  M  /\  suc  M  ~<  a )  ->  ( suc  M  X.  suc  M ) 
~<  a )
220219expcom 425 . . . . . . . . . . . . . . . . 17  |-  ( suc 
M  ~<  a  ->  (
( suc  M  X.  suc  M )  ~~  suc  M  ->  ( suc  M  X.  suc  M )  ~< 
a ) )
221203, 218, 220sylsyld 54 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( -.  suc  M  e.  om  ->  ( suc  M  X.  suc  M )  ~<  a
) )
222199, 221pm2.61d 152 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( suc  M  X.  suc  M
)  ~<  a )
223 domsdomtr 7201 . . . . . . . . . . . . . . 15  |-  ( ( ( `' Q " { w } )  ~<_  ( suc  M  X.  suc  M )  /\  ( suc  M  X.  suc  M
)  ~<  a )  -> 
( `' Q " { w } ) 
~<  a )
224186, 222, 223syl2anc 643 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' Q " { w } )  ~<  a
)
225 ensdomtr 7202 . . . . . . . . . . . . . 14  |-  ( ( ( `' J `  w )  ~~  ( `' Q " { w } )  /\  ( `' Q " { w } )  ~<  a
)  ->  ( `' J `  w )  ~<  a )
22691, 224, 225syl2anc 643 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' J `  w ) 
~<  a )
227 ordelon 4565 . . . . . . . . . . . . . . 15  |-  ( ( Ord  dom  J  /\  ( `' J `  w )  e.  dom  J )  ->  ( `' J `  w )  e.  On )
22878, 82, 227sylancr 645 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' J `  w )  e.  On )
229 onenon 7792 . . . . . . . . . . . . . . 15  |-  ( a  e.  On  ->  a  e.  dom  card )
230114, 229syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  a  e.  dom  card )
231 cardsdomel 7817 . . . . . . . . . . . . . 14  |-  ( ( ( `' J `  w )  e.  On  /\  a  e.  dom  card )  ->  ( ( `' J `  w ) 
~<  a  <->  ( `' J `  w )  e.  (
card `  a )
) )
232228, 230, 231syl2anc 643 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  (
( `' J `  w )  ~<  a  <->  ( `' J `  w )  e.  ( card `  a
) ) )
233226, 232mpbid 202 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' J `  w )  e.  ( card `  a
) )
234 eleq2 2465 . . . . . . . . . . . . . 14  |-  ( (
card `  a )  =  a  ->  ( ( `' J `  w )  e.  ( card `  a
)  <->  ( `' J `  w )  e.  a ) )
235132, 234sylbir 205 . . . . . . . . . . . . 13  |-  ( ( a  e.  On  /\  A. m  e.  a  m 
~<  a )  ->  (
( `' J `  w )  e.  (
card `  a )  <->  ( `' J `  w )  e.  a ) )
236114, 200, 235syl2anc 643 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  (
( `' J `  w )  e.  (
card `  a )  <->  ( `' J `  w )  e.  a ) )
237233, 236mpbid 202 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' J `  w )  e.  a )
238237ralrimiva 2749 . . . . . . . . . 10  |-  ( ph  ->  A. w  e.  ( a  X.  a ) ( `' J `  w )  e.  a )
239 fnfvrnss 5855 . . . . . . . . . . 11  |-  ( ( `' J  Fn  (
a  X.  a )  /\  A. w  e.  ( a  X.  a
) ( `' J `  w )  e.  a )  ->  ran  `' J  C_  a )
240 ssdomg 7112 . . . . . . . . . . 11  |-  ( a  e.  _V  ->  ( ran  `' J  C_  a  ->  ran  `' J  ~<_  a )
)
24114, 239, 240mpsyl 61 . . . . . . . . . 10  |-  ( ( `' J  Fn  (
a  X.  a )  /\  A. w  e.  ( a  X.  a
) ( `' J `  w )  e.  a )  ->  ran  `' J  ~<_  a )
24246, 238, 241syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  ran  `' J  ~<_  a )
243 endomtr 7124 . . . . . . . . 9  |-  ( ( ( a  X.  a
)  ~~  ran  `' J  /\  ran  `' J  ~<_  a )  ->  ( a  X.  a )  ~<_  a )
24444, 242, 243syl2anc 643 . . . . . . . 8  |-  ( ph  ->  ( a  X.  a
)  ~<_  a )
24513, 244sylbir 205 . . . . . . 7  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  A. m  e.  a  m  ~<  a ) )  ->  (
a  X.  a )  ~<_  a )
246 df1o2 6695 . . . . . . . . . . . 12  |-  1o  =  { (/) }
247 1onn 6841 . . . . . . . . . . . 12  |-  1o  e.  om
248246, 247eqeltrri 2475 . . . . . . . . . . 11  |-  { (/) }  e.  om
249 nnsdom 7564 . . . . . . . . . . 11  |-  ( {
(/) }  e.  om  ->  { (/) }  ~<  om )
250 sdomdom 7094 . . . . . . . . . . 11  |-  ( {
(/) }  ~<  om  ->  {
(/) }  ~<_  om )
251248, 249, 250mp2b 10 . . . . . . . . . 10  |-  { (/) }  ~<_  om
252 domtr 7119 . . . . . . . . . 10  |-  ( ( { (/) }  ~<_  om  /\  om  ~<_  a )  ->  { (/) }  ~<_  a )
253251, 195, 252sylancr 645 . . . . . . . . 9  |-  ( om  C_  a  ->  { (/) }  ~<_  a )
254 0ex 4299 . . . . . . . . . . . 12  |-  (/)  e.  _V
25514, 254xpsnen 7151 . . . . . . . . . . 11  |-  ( a  X.  { (/) } ) 
~~  a
256255ensymi 7116 . . . . . . . . . 10  |-  a  ~~  ( a  X.  { (/)
} )
25714xpdom2 7162 . . . . . . . . . 10  |-  ( {
(/) }  ~<_  a  ->  ( a  X.  { (/) } )  ~<_  ( a  X.  a ) )
258 endomtr 7124 . . . . . . . . . 10  |-  ( ( a  ~~  ( a  X.  { (/) } )  /\  ( a  X. 
{ (/) } )  ~<_  ( a  X.  a ) )  ->  a  ~<_  ( a  X.  a ) )
259256, 257, 258sylancr 645 . . . . . . . . 9  |-  ( {
(/) }  ~<_  a  ->  a  ~<_  ( a  X.  a
) )
260253, 259syl 16 . . . . . . . 8  |-  ( om  C_  a  ->  a  ~<_  ( a  X.  a ) )
261260ad2antrl 709 . . . . . . 7  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  A. m  e.  a  m  ~<  a ) )  ->  a  ~<_  ( a  X.  a
) )
262 sbth 7186 . . . . . . 7  |-  ( ( ( a  X.  a
)  ~<_  a  /\  a  ~<_  ( a  X.  a
) )  ->  (
a  X.  a ) 
~~  a )
263245, 261, 262syl2anc 643 . . . . . 6  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  A. m  e.  a  m  ~<  a ) )  ->  (
a  X.  a ) 
~~  a )
264263expr 599 . . . . 5  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  om  C_  a
)  ->  ( A. m  e.  a  m  ~<  a  ->  ( a  X.  a )  ~~  a
) )
265 simplr 732 . . . . . . . 8  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  -.  A. m  e.  a  m  ~<  a ) )  ->  A. m  e.  a 
( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)
266 simpll 731 . . . . . . . . 9  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  -.  A. m  e.  a  m  ~<  a ) )  -> 
a  e.  On )
267 simprr 734 . . . . . . . . 9  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  -.  A. m  e.  a  m  ~<  a ) )  ->  -.  A. m  e.  a  m  ~<  a )
268 rexnal 2677 . . . . . . . . . 10  |-  ( E. m  e.  a  -.  m  ~<  a  <->  -.  A. m  e.  a  m  ~<  a )
269 onelss 4583 . . . . . . . . . . . . 13  |-  ( a  e.  On  ->  (
m  e.  a  ->  m  C_  a ) )
270 ssdomg 7112 . . . . . . . . . . . . 13  |-  ( a  e.  On  ->  (
m  C_  a  ->  m  ~<_  a ) )
271269, 270syld 42 . . . . . . . . . . . 12  |-  ( a  e.  On  ->  (
m  e.  a  ->  m  ~<_  a ) )
272 bren2 7097 . . . . . . . . . . . . 13  |-  ( m 
~~  a  <->  ( m  ~<_  a  /\  -.  m  ~<  a ) )
273272simplbi2 609 . . . . . . . . . . . 12  |-  ( m  ~<_  a  ->  ( -.  m  ~<  a  ->  m  ~~  a ) )
274271, 273syl6 31 . . . . . . . . . . 11  |-  ( a  e.  On  ->  (
m  e.  a  -> 
( -.  m  ~<  a  ->  m  ~~  a
) ) )
275274reximdvai 2776 . . . . . . . . . 10  |-  ( a  e.  On  ->  ( E. m  e.  a  -.  m  ~<  a  ->  E. m  e.  a  m  ~~  a ) )
276268, 275syl5bir 210 . . . . . . . . 9  |-  ( a  e.  On  ->  ( -.  A. m  e.  a  m  ~<  a  ->  E. m  e.  a  m 
~~  a ) )
277266, 267, 276sylc 58 . . . . . . . 8  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  -.  A. m  e.  a  m  ~<  a ) )  ->  E. m  e.  a  m  ~~  a )
278 r19.29 2806 . . . . . . . 8  |-  ( ( A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )  /\  E. m  e.  a  m  ~~  a )  ->  E. m  e.  a  ( ( om  C_  m  ->  ( m  X.  m
)  ~~  m )  /\  m  ~~  a ) )
279265, 277, 278syl2anc 643 . . . . . . 7  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  -.  A. m  e.  a  m  ~<  a ) )  ->  E. m  e.  a 
( ( om  C_  m  ->  ( m  X.  m
)  ~~  m )  /\  m  ~~  a ) )
280 simprl 733 . . . . . . . 8  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  -.  A. m  e.  a  m  ~<  a ) )  ->  om  C_  a )
281 onelon 4566 . . . . . . . . . . . . . . . . 17  |-  ( ( a  e.  On  /\  m  e.  a )  ->  m  e.  On )
282 ensym 7115 . . . . . . . . . . . . . . . . . 18  |-  ( m 
~~  a  ->  a  ~~  m )
283 domentr 7125 . . . . . . . . . . . . . . . . . 18  |-  ( ( om  ~<_  a  /\  a  ~~  m )  ->  om  ~<_  m )
284195, 282, 283syl2an 464 . . . . . . . . . . . . . . . . 17  |-  ( ( om  C_  a  /\  m  ~~  a )  ->  om 
~<_  m )
285 domnsym 7192 . . . . . . . . . . . . . . . . . . 19  |-  ( om  ~<_  m  ->  -.  m  ~<  om )
286 nnsdom 7564 . . . . . . . . . . . . . . . . . . 19  |-  ( m  e.  om  ->  m  ~<  om )
287285, 286nsyl 115 . . . . . . . . . . . . . . . . . 18  |-  ( om  ~<_  m  ->  -.  m  e.  om )
288 ontri1 4575 . . . . . . . . . . . . . . . . . . 19  |-  ( ( om  e.  On  /\  m  e.  On )  ->  ( om  C_  m  <->  -.  m  e.  om )
)
289204, 288mpan 652 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  On  ->  ( om  C_  m  <->  -.  m  e.  om ) )
290287, 289syl5ibr 213 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  On  ->  ( om 
~<_  m  ->  om  C_  m
) )
291281, 284, 290syl2im 36 . . . . . . . . . . . . . . . 16  |-  ( ( a  e.  On  /\  m  e.  a )  ->  ( ( om  C_  a  /\  m  ~~  a )  ->  om  C_  m ) )
292291exp3a 426 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  On  /\  m  e.  a )  ->  ( om  C_  a  ->  ( m  ~~  a  ->  om  C_  m )
) )
293292impcom 420 . . . . . . . . . . . . . 14  |-  ( ( om  C_  a  /\  ( a  e.  On  /\  m  e.  a ) )  ->  ( m  ~~  a  ->  om  C_  m
) )
294293imim1d 71 . . . . . . . . . . . . 13  |-  ( ( om  C_  a  /\  ( a  e.  On  /\  m  e.  a ) )  ->  ( ( om  C_  m  ->  (
m  X.  m ) 
~~  m )  -> 
( m  ~~  a  ->  ( m  X.  m
)  ~~  m )
) )
295294imp32 423 . . . . . . . . . . . 12  |-  ( ( ( om  C_  a  /\  ( a  e.  On  /\  m  e.  a ) )  /\  ( ( om  C_  m  ->  ( m  X.  m ) 
~~  m )  /\  m  ~~  a ) )  ->  ( m  X.  m )  ~~  m
)
296 entr 7118 . . . . . . . . . . . . . . . 16  |-  ( ( ( m  X.  m
)  ~~  m  /\  m  ~~  a )  -> 
( m  X.  m
)  ~~  a )
297296ancoms 440 . . . . . . . . . . . . . . 15  |-  ( ( m  ~~  a  /\  ( m  X.  m
)  ~~  m )  ->  ( m  X.  m
)  ~~  a )
298 xpen 7229 . . . . . . . . . . . . . . . . . 18  |-  ( ( a  ~~  m  /\  a  ~~  m )  -> 
( a  X.  a
)  ~~  ( m  X.  m ) )
299298anidms 627 . . . . . . . . . . . . . . . . 17  |-  ( a 
~~  m  ->  (
a  X.  a ) 
~~  ( m  X.  m ) )
300 entr 7118 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  X.  a
)  ~~  ( m  X.  m )  /\  (
m  X.  m ) 
~~  a )  -> 
( a  X.  a
)  ~~  a )
301299, 300sylan 458 . . . . . . . . . . . . . . . 16  |-  ( ( a  ~~  m  /\  ( m  X.  m
)  ~~  a )  ->  ( a  X.  a
)  ~~  a )
302282, 301sylan 458 . . . . . . . . . . . . . . 15  |-  ( ( m  ~~  a  /\  ( m  X.  m
)  ~~  a )  ->  ( a  X.  a
)  ~~  a )
303297, 302syldan 457 . . . . . . . . . . . . . 14  |-  ( ( m  ~~  a  /\  ( m  X.  m
)  ~~  m )  ->  ( a  X.  a
)  ~~  a )
304303ex 424 . . . . . . . . . . . . 13  |-  ( m 
~~  a  ->  (
( m  X.  m
)  ~~  m  ->  ( a  X.  a ) 
~~  a ) )
305304ad2antll 710 . . . . . . . . . . . 12  |-  ( ( ( om  C_  a  /\  ( a  e.  On  /\  m  e.  a ) )  /\  ( ( om  C_  m  ->  ( m  X.  m ) 
~~  m )  /\  m  ~~  a ) )  ->  ( ( m  X.  m )  ~~  m  ->  ( a  X.  a )  ~~  a
) )
306295, 305mpd 15 . . . . . . . . . . 11  |-  ( ( ( om  C_  a  /\  ( a  e.  On  /\  m  e.  a ) )  /\  ( ( om  C_  m  ->  ( m  X.  m ) 
~~  m )  /\  m  ~~  a ) )  ->  ( a  X.  a )  ~~  a
)
307306ex 424 . . . . . . . . . 10  |-  ( ( om  C_  a  /\  ( a  e.  On  /\  m  e.  a ) )  ->  ( (
( om  C_  m  ->  ( m  X.  m
)  ~~  m )  /\  m  ~~  a )  ->  ( a  X.  a )  ~~  a
) )
308307expr 599 . . . . . . . . 9  |-  ( ( om  C_  a  /\  a  e.  On )  ->  ( m  e.  a  ->  ( ( ( om  C_  m  ->  ( m  X.  m ) 
~~  m )  /\  m  ~~  a )  -> 
( a  X.  a
)  ~~  a )
) )
309308rexlimdv 2789 . . . . . . . 8  |-  ( ( om  C_  a  /\  a  e.  On )  ->  ( E. m  e.  a  ( ( om  C_  m  ->  ( m  X.  m )  ~~  m )  /\  m  ~~  a )  ->  (
a  X.  a ) 
~~  a ) )
310280, 266, 309syl2anc 643 . . . . . . 7  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  -.  A. m  e.  a  m  ~<  a ) )  -> 
( E. m  e.  a  ( ( om  C_  m  ->  ( m  X.  m )  ~~  m )  /\  m  ~~  a )  ->  (
a  X.  a ) 
~~  a ) )
311279, 310mpd 15 . . . . . 6  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  -.  A. m  e.  a  m  ~<  a ) )  -> 
( a  X.  a
)  ~~  a )
312311expr 599 . . . . 5  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  om  C_  a
)  ->  ( -.  A. m  e.  a  m 
~<  a  ->  ( a  X.  a )  ~~  a ) )
313264, 312pm2.61d 152 . . . 4  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  om  C_  a
)  ->  ( a  X.  a )  ~~  a
)
314313exp31 588 . . 3  |-  ( a  e.  On  ->  ( A. m  e.  a 
( om  C_  m  ->  ( m  X.  m
)  ~~  m )  ->  ( om  C_  a  ->  ( a  X.  a
)  ~~  a )
) )
3156, 12, 314tfis3 4796 . 2  |-  ( A  e.  On  ->  ( om  C_  A  ->  ( A  X.  A )  ~~  A ) )
316315imp 419 1  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( A  X.  A )  ~~  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667   _Vcvv 2916    u. cun 3278    i^i cin 3279    C_ wss 3280   (/)c0 3588   {csn 3774   <.cop 3777   class class class wbr 4172   {copab 4225    _E cep 4452   Se wse 4499    We wwe 4500   Ord word 4540   Oncon0 4541   Lim wlim 4542   suc csuc 4543   omcom 4804    X. cxp 4835   `'ccnv 4836   dom cdm 4837   ran crn 4838    |` cres 4839   "cima 4840    Fn wfn 5408   -->wf 5409   -1-1->wf1 5410   -1-1-onto->wf1o 5412   ` cfv 5413    Isom wiso 5414   1stc1st 6306   2ndc2nd 6307   1oc1o 6676    ~~ cen 7065    ~<_ cdom 7066    ~< csdm 7067   Fincfn 7068  OrdIsocoi 7434   cardccrd 7778
This theorem is referenced by:  infxpen  7852
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-oi 7435  df-card 7782
  Copyright terms: Public domain W3C validator