MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenlem Structured version   Unicode version

Theorem infxpenlem 8382
Description: Lemma for infxpen 8383. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
leweon.1  |-  L  =  { <. x ,  y
>.  |  ( (
x  e.  ( On 
X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x
)  e.  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  e.  ( 2nd `  y
) ) ) ) }
r0weon.1  |-  R  =  { <. z ,  w >.  |  ( ( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  (
( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) ) ) }
infxpen.1  |-  Q  =  ( R  i^i  (
( a  X.  a
)  X.  ( a  X.  a ) ) )
infxpen.2  |-  ( ph  <->  ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  A. m  e.  a  m  ~<  a ) ) )
infxpen.3  |-  M  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) )
infxpen.4  |-  J  = OrdIso
( Q ,  ( a  X.  a ) )
Assertion
Ref Expression
infxpenlem  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( A  X.  A )  ~~  A )
Distinct variable groups:    A, a    w, J    z, w, L   
z, m, M    ph, w, z    z, Q    m, a, w, x, y, z
Allowed substitution hints:    ph( x, y, m, a)    A( x, y, z, w, m)    Q( x, y, w, m, a)    R( x, y, z, w, m, a)    J( x, y, z, m, a)    L( x, y, m, a)    M( x, y, w, a)

Proof of Theorem infxpenlem
StepHypRef Expression
1 sseq2 3511 . . . 4  |-  ( a  =  m  ->  ( om  C_  a  <->  om  C_  m
) )
2 xpeq12 5007 . . . . . 6  |-  ( ( a  =  m  /\  a  =  m )  ->  ( a  X.  a
)  =  ( m  X.  m ) )
32anidms 643 . . . . 5  |-  ( a  =  m  ->  (
a  X.  a )  =  ( m  X.  m ) )
4 id 22 . . . . 5  |-  ( a  =  m  ->  a  =  m )
53, 4breq12d 4452 . . . 4  |-  ( a  =  m  ->  (
( a  X.  a
)  ~~  a  <->  ( m  X.  m )  ~~  m
) )
61, 5imbi12d 318 . . 3  |-  ( a  =  m  ->  (
( om  C_  a  ->  ( a  X.  a
)  ~~  a )  <->  ( om  C_  m  ->  ( m  X.  m ) 
~~  m ) ) )
7 sseq2 3511 . . . 4  |-  ( a  =  A  ->  ( om  C_  a  <->  om  C_  A
) )
8 xpeq12 5007 . . . . . 6  |-  ( ( a  =  A  /\  a  =  A )  ->  ( a  X.  a
)  =  ( A  X.  A ) )
98anidms 643 . . . . 5  |-  ( a  =  A  ->  (
a  X.  a )  =  ( A  X.  A ) )
10 id 22 . . . . 5  |-  ( a  =  A  ->  a  =  A )
119, 10breq12d 4452 . . . 4  |-  ( a  =  A  ->  (
( a  X.  a
)  ~~  a  <->  ( A  X.  A )  ~~  A
) )
127, 11imbi12d 318 . . 3  |-  ( a  =  A  ->  (
( om  C_  a  ->  ( a  X.  a
)  ~~  a )  <->  ( om  C_  A  ->  ( A  X.  A ) 
~~  A ) ) )
13 infxpen.2 . . . . . . . 8  |-  ( ph  <->  ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  A. m  e.  a  m  ~<  a ) ) )
14 vex 3109 . . . . . . . . . . . . 13  |-  a  e. 
_V
1514, 14xpex 6577 . . . . . . . . . . . 12  |-  ( a  X.  a )  e. 
_V
16 simpll 751 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  A. m  e.  a  m  ~<  a ) )  ->  a  e.  On )
1713, 16sylbi 195 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  a  e.  On )
18 onss 6599 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  On  ->  a  C_  On )
1917, 18syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  a  C_  On )
20 xpss12 5096 . . . . . . . . . . . . . . . 16  |-  ( ( a  C_  On  /\  a  C_  On )  ->  (
a  X.  a ) 
C_  ( On  X.  On ) )
2119, 19, 20syl2anc 659 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( a  X.  a
)  C_  ( On  X.  On ) )
22 leweon.1 . . . . . . . . . . . . . . . . 17  |-  L  =  { <. x ,  y
>.  |  ( (
x  e.  ( On 
X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x
)  e.  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  e.  ( 2nd `  y
) ) ) ) }
23 r0weon.1 . . . . . . . . . . . . . . . . 17  |-  R  =  { <. z ,  w >.  |  ( ( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  (
( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) ) ) }
2422, 23r0weon 8381 . . . . . . . . . . . . . . . 16  |-  ( R  We  ( On  X.  On )  /\  R Se  ( On  X.  On ) )
2524simpli 456 . . . . . . . . . . . . . . 15  |-  R  We  ( On  X.  On )
26 wess 4855 . . . . . . . . . . . . . . 15  |-  ( ( a  X.  a ) 
C_  ( On  X.  On )  ->  ( R  We  ( On  X.  On )  ->  R  We  ( a  X.  a
) ) )
2721, 25, 26mpisyl 18 . . . . . . . . . . . . . 14  |-  ( ph  ->  R  We  ( a  X.  a ) )
28 weinxp 5056 . . . . . . . . . . . . . 14  |-  ( R  We  ( a  X.  a )  <->  ( R  i^i  ( ( a  X.  a )  X.  (
a  X.  a ) ) )  We  (
a  X.  a ) )
2927, 28sylib 196 . . . . . . . . . . . . 13  |-  ( ph  ->  ( R  i^i  (
( a  X.  a
)  X.  ( a  X.  a ) ) )  We  ( a  X.  a ) )
30 infxpen.1 . . . . . . . . . . . . . 14  |-  Q  =  ( R  i^i  (
( a  X.  a
)  X.  ( a  X.  a ) ) )
31 weeq1 4856 . . . . . . . . . . . . . 14  |-  ( Q  =  ( R  i^i  ( ( a  X.  a )  X.  (
a  X.  a ) ) )  ->  ( Q  We  ( a  X.  a )  <->  ( R  i^i  ( ( a  X.  a )  X.  (
a  X.  a ) ) )  We  (
a  X.  a ) ) )
3230, 31ax-mp 5 . . . . . . . . . . . . 13  |-  ( Q  We  ( a  X.  a )  <->  ( R  i^i  ( ( a  X.  a )  X.  (
a  X.  a ) ) )  We  (
a  X.  a ) )
3329, 32sylibr 212 . . . . . . . . . . . 12  |-  ( ph  ->  Q  We  ( a  X.  a ) )
34 infxpen.4 . . . . . . . . . . . . 13  |-  J  = OrdIso
( Q ,  ( a  X.  a ) )
3534oiiso 7954 . . . . . . . . . . . 12  |-  ( ( ( a  X.  a
)  e.  _V  /\  Q  We  ( a  X.  a ) )  ->  J  Isom  _E  ,  Q  ( dom  J ,  ( a  X.  a ) ) )
3615, 33, 35sylancr 661 . . . . . . . . . . 11  |-  ( ph  ->  J  Isom  _E  ,  Q  ( dom  J ,  ( a  X.  a ) ) )
37 isof1o 6196 . . . . . . . . . . 11  |-  ( J 
Isom  _E  ,  Q  ( dom  J ,  ( a  X.  a ) )  ->  J : dom  J -1-1-onto-> ( a  X.  a
) )
38 f1ocnv 5810 . . . . . . . . . . 11  |-  ( J : dom  J -1-1-onto-> ( a  X.  a )  ->  `' J : ( a  X.  a ) -1-1-onto-> dom  J
)
39 f1of1 5797 . . . . . . . . . . 11  |-  ( `' J : ( a  X.  a ) -1-1-onto-> dom  J  ->  `' J : ( a  X.  a ) -1-1-> dom  J )
4036, 37, 38, 394syl 21 . . . . . . . . . 10  |-  ( ph  ->  `' J : ( a  X.  a ) -1-1-> dom  J )
41 f1f1orn 5809 . . . . . . . . . 10  |-  ( `' J : ( a  X.  a ) -1-1-> dom  J  ->  `' J :
( a  X.  a
)
-1-1-onto-> ran  `' J )
4215f1oen 7529 . . . . . . . . . 10  |-  ( `' J : ( a  X.  a ) -1-1-onto-> ran  `' J  ->  ( a  X.  a )  ~~  ran  `' J )
4340, 41, 423syl 20 . . . . . . . . 9  |-  ( ph  ->  ( a  X.  a
)  ~~  ran  `' J
)
44 f1ofn 5799 . . . . . . . . . . 11  |-  ( `' J : ( a  X.  a ) -1-1-onto-> dom  J  ->  `' J  Fn  (
a  X.  a ) )
4536, 37, 38, 444syl 21 . . . . . . . . . 10  |-  ( ph  ->  `' J  Fn  (
a  X.  a ) )
4636adantr 463 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  J  Isom  _E  ,  Q  ( dom  J ,  ( a  X.  a ) ) )
4737, 38, 393syl 20 . . . . . . . . . . . . . . . . . 18  |-  ( J 
Isom  _E  ,  Q  ( dom  J ,  ( a  X.  a ) )  ->  `' J : ( a  X.  a ) -1-1-> dom  J
)
48 cnvimass 5345 . . . . . . . . . . . . . . . . . . 19  |-  ( `' Q " { w } )  C_  dom  Q
49 inss2 3705 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( R  i^i  ( ( a  X.  a )  X.  ( a  X.  a
) ) )  C_  ( ( a  X.  a )  X.  (
a  X.  a ) )
5030, 49eqsstri 3519 . . . . . . . . . . . . . . . . . . . . 21  |-  Q  C_  ( ( a  X.  a )  X.  (
a  X.  a ) )
51 dmss 5191 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Q 
C_  ( ( a  X.  a )  X.  ( a  X.  a
) )  ->  dom  Q 
C_  dom  ( (
a  X.  a )  X.  ( a  X.  a ) ) )
5250, 51ax-mp 5 . . . . . . . . . . . . . . . . . . . 20  |-  dom  Q  C_ 
dom  ( ( a  X.  a )  X.  ( a  X.  a
) )
53 dmxpid 5211 . . . . . . . . . . . . . . . . . . . 20  |-  dom  (
( a  X.  a
)  X.  ( a  X.  a ) )  =  ( a  X.  a )
5452, 53sseqtri 3521 . . . . . . . . . . . . . . . . . . 19  |-  dom  Q  C_  ( a  X.  a
)
5548, 54sstri 3498 . . . . . . . . . . . . . . . . . 18  |-  ( `' Q " { w } )  C_  (
a  X.  a )
56 f1ores 5812 . . . . . . . . . . . . . . . . . 18  |-  ( ( `' J : ( a  X.  a ) -1-1-> dom  J  /\  ( `' Q " { w } ) 
C_  ( a  X.  a ) )  -> 
( `' J  |`  ( `' Q " { w } ) ) : ( `' Q " { w } ) -1-1-onto-> ( `' J " ( `' Q " { w } ) ) )
5747, 55, 56sylancl 660 . . . . . . . . . . . . . . . . 17  |-  ( J 
Isom  _E  ,  Q  ( dom  J ,  ( a  X.  a ) )  ->  ( `' J  |`  ( `' Q " { w } ) ) : ( `' Q " { w } ) -1-1-onto-> ( `' J "
( `' Q " { w } ) ) )
5815, 15xpex 6577 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( a  X.  a )  X.  ( a  X.  a ) )  e. 
_V
5958inex2 4579 . . . . . . . . . . . . . . . . . . . . 21  |-  ( R  i^i  ( ( a  X.  a )  X.  ( a  X.  a
) ) )  e. 
_V
6030, 59eqeltri 2538 . . . . . . . . . . . . . . . . . . . 20  |-  Q  e. 
_V
6160cnvex 6720 . . . . . . . . . . . . . . . . . . 19  |-  `' Q  e.  _V
62 imaexg 6710 . . . . . . . . . . . . . . . . . . 19  |-  ( `' Q  e.  _V  ->  ( `' Q " { w } )  e.  _V )
6361, 62ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  ( `' Q " { w } )  e.  _V
6463f1oen 7529 . . . . . . . . . . . . . . . . 17  |-  ( ( `' J  |`  ( `' Q " { w } ) ) : ( `' Q " { w } ) -1-1-onto-> ( `' J " ( `' Q " { w } ) )  -> 
( `' Q " { w } ) 
~~  ( `' J " ( `' Q " { w } ) ) )
6546, 57, 643syl 20 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' Q " { w } )  ~~  ( `' J " ( `' Q " { w } ) ) )
66 sseqin2 3703 . . . . . . . . . . . . . . . . . . 19  |-  ( ( `' Q " { w } )  C_  (
a  X.  a )  <-> 
( ( a  X.  a )  i^i  ( `' Q " { w } ) )  =  ( `' Q " { w } ) )
6755, 66mpbi 208 . . . . . . . . . . . . . . . . . 18  |-  ( ( a  X.  a )  i^i  ( `' Q " { w } ) )  =  ( `' Q " { w } )
6867imaeq2i 5323 . . . . . . . . . . . . . . . . 17  |-  ( `' J " ( ( a  X.  a )  i^i  ( `' Q " { w } ) ) )  =  ( `' J " ( `' Q " { w } ) )
69 isocnv 6201 . . . . . . . . . . . . . . . . . . . 20  |-  ( J 
Isom  _E  ,  Q  ( dom  J ,  ( a  X.  a ) )  ->  `' J  Isom  Q ,  _E  (
( a  X.  a
) ,  dom  J
) )
7046, 69syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  `' J  Isom  Q ,  _E  ( ( a  X.  a ) ,  dom  J ) )
71 simpr 459 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  w  e.  ( a  X.  a
) )
72 isoini 6209 . . . . . . . . . . . . . . . . . . 19  |-  ( ( `' J  Isom  Q ,  _E  ( ( a  X.  a ) ,  dom  J )  /\  w  e.  ( a  X.  a
) )  ->  ( `' J " ( ( a  X.  a )  i^i  ( `' Q " { w } ) ) )  =  ( dom  J  i^i  ( `'  _E  " { ( `' J `  w ) } ) ) )
7370, 71, 72syl2anc 659 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' J " ( ( a  X.  a )  i^i  ( `' Q " { w } ) ) )  =  ( dom  J  i^i  ( `'  _E  " { ( `' J `  w ) } ) ) )
74 fvex 5858 . . . . . . . . . . . . . . . . . . . . 21  |-  ( `' J `  w )  e.  _V
7574epini 5355 . . . . . . . . . . . . . . . . . . . 20  |-  ( `'  _E  " { ( `' J `  w ) } )  =  ( `' J `  w )
7675ineq2i 3683 . . . . . . . . . . . . . . . . . . 19  |-  ( dom 
J  i^i  ( `'  _E  " { ( `' J `  w ) } ) )  =  ( dom  J  i^i  ( `' J `  w ) )
7734oicl 7946 . . . . . . . . . . . . . . . . . . . . 21  |-  Ord  dom  J
78 f1of 5798 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( `' J : ( a  X.  a ) -1-1-onto-> dom  J  ->  `' J : ( a  X.  a ) --> dom 
J )
7936, 37, 38, 784syl 21 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  `' J : ( a  X.  a ) --> dom 
J )
8079ffvelrnda 6007 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' J `  w )  e.  dom  J )
81 ordelss 4883 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( Ord  dom  J  /\  ( `' J `  w )  e.  dom  J )  ->  ( `' J `  w )  C_  dom  J )
8277, 80, 81sylancr 661 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' J `  w ) 
C_  dom  J )
83 dfss1 3689 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( `' J `  w ) 
C_  dom  J  <->  ( dom  J  i^i  ( `' J `  w ) )  =  ( `' J `  w ) )
8482, 83sylib 196 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( dom  J  i^i  ( `' J `  w ) )  =  ( `' J `  w ) )
8576, 84syl5eq 2507 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( dom  J  i^i  ( `'  _E  " { ( `' J `  w ) } ) )  =  ( `' J `  w ) )
8673, 85eqtrd 2495 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' J " ( ( a  X.  a )  i^i  ( `' Q " { w } ) ) )  =  ( `' J `  w ) )
8768, 86syl5eqr 2509 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' J " ( `' Q " { w } ) )  =  ( `' J `  w ) )
8865, 87breqtrd 4463 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' Q " { w } )  ~~  ( `' J `  w ) )
8988ensymd 7559 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' J `  w ) 
~~  ( `' Q " { w } ) )
90 infxpen.3 . . . . . . . . . . . . . . . . . . 19  |-  M  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) )
91 fvex 5858 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1st `  w )  e.  _V
92 fvex 5858 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2nd `  w )  e.  _V
9391, 92unex 6571 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1st `  w )  u.  ( 2nd `  w
) )  e.  _V
9490, 93eqeltri 2538 . . . . . . . . . . . . . . . . . 18  |-  M  e. 
_V
9594sucex 6619 . . . . . . . . . . . . . . . . 17  |-  suc  M  e.  _V
9695, 95xpex 6577 . . . . . . . . . . . . . . . 16  |-  ( suc 
M  X.  suc  M
)  e.  _V
97 xpss 5097 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  X.  a )  C_  ( _V  X.  _V )
98 simp3 996 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
z  e.  ( `' Q " { w } ) )
99 vex 3109 . . . . . . . . . . . . . . . . . . . . . . 23  |-  w  e. 
_V
100 vex 3109 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  z  e. 
_V
101100eliniseg 5354 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  e.  _V  ->  (
z  e.  ( `' Q " { w } )  <->  z Q w ) )
10299, 101ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  ( `' Q " { w } )  <-> 
z Q w )
10398, 102sylib 196 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
z Q w )
10430breqi 4445 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z Q w  <->  z ( R  i^i  ( ( a  X.  a )  X.  ( a  X.  a
) ) ) w )
105 brin 4488 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z ( R  i^i  (
( a  X.  a
)  X.  ( a  X.  a ) ) ) w  <->  ( z R w  /\  z
( ( a  X.  a )  X.  (
a  X.  a ) ) w ) )
106104, 105bitri 249 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z Q w  <->  ( z R w  /\  z
( ( a  X.  a )  X.  (
a  X.  a ) ) w ) )
107106simprbi 462 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z Q w  ->  z
( ( a  X.  a )  X.  (
a  X.  a ) ) w )
108 brxp 5019 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z ( ( a  X.  a )  X.  (
a  X.  a ) ) w  <->  ( z  e.  ( a  X.  a
)  /\  w  e.  ( a  X.  a
) ) )
109108simplbi 458 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z ( ( a  X.  a )  X.  (
a  X.  a ) ) w  ->  z  e.  ( a  X.  a
) )
110103, 107, 1093syl 20 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
z  e.  ( a  X.  a ) )
11197, 110sseldi 3487 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
z  e.  ( _V 
X.  _V ) )
11217adantr 463 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  a  e.  On )
1131123adant3 1014 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
a  e.  On )
114 xp1st 6803 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  ( a  X.  a )  ->  ( 1st `  z )  e.  a )
115 onelon 4892 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( a  e.  On  /\  ( 1st `  z )  e.  a )  -> 
( 1st `  z
)  e.  On )
116114, 115sylan2 472 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( a  e.  On  /\  z  e.  ( a  X.  a ) )  -> 
( 1st `  z
)  e.  On )
117113, 110, 116syl2anc 659 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
( 1st `  z
)  e.  On )
118 eloni 4877 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( a  e.  On  ->  Ord  a )
119 elxp7 6806 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( w  e.  ( a  X.  a )  <->  ( w  e.  ( _V  X.  _V )  /\  ( ( 1st `  w )  e.  a  /\  ( 2nd `  w
)  e.  a ) ) )
120119simprbi 462 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( w  e.  ( a  X.  a )  ->  (
( 1st `  w
)  e.  a  /\  ( 2nd `  w )  e.  a ) )
121 ordunel 6635 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( Ord  a  /\  ( 1st `  w )  e.  a  /\  ( 2nd `  w )  e.  a )  ->  ( ( 1st `  w )  u.  ( 2nd `  w
) )  e.  a )
1221213expib 1197 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( Ord  a  ->  ( (
( 1st `  w
)  e.  a  /\  ( 2nd `  w )  e.  a )  -> 
( ( 1st `  w
)  u.  ( 2nd `  w ) )  e.  a ) )
123118, 120, 122syl2im 38 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( a  e.  On  ->  (
w  e.  ( a  X.  a )  -> 
( ( 1st `  w
)  u.  ( 2nd `  w ) )  e.  a ) )
124112, 71, 123sylc 60 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  (
( 1st `  w
)  u.  ( 2nd `  w ) )  e.  a )
12590, 124syl5eqel 2546 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  M  e.  a )
126 simprr 755 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  A. m  e.  a  m  ~<  a ) )  ->  A. m  e.  a  m  ~<  a )
12713, 126sylbi 195 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  A. m  e.  a  m  ~<  a )
128 simprl 754 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  A. m  e.  a  m  ~<  a ) )  ->  om  C_  a
)
12913, 128sylbi 195 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  om  C_  a )
130 iscard 8347 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
card `  a )  =  a  <->  ( a  e.  On  /\  A. m  e.  a  m  ~<  a ) )
131 cardlim 8344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( om  C_  ( card `  a
)  <->  Lim  ( card `  a
) )
132 sseq2 3511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
card `  a )  =  a  ->  ( om  C_  ( card `  a
)  <->  om  C_  a )
)
133 limeq 4879 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
card `  a )  =  a  ->  ( Lim  ( card `  a
)  <->  Lim  a ) )
134132, 133bibi12d 319 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
card `  a )  =  a  ->  ( ( om  C_  ( card `  a )  <->  Lim  ( card `  a ) )  <->  ( om  C_  a  <->  Lim  a ) ) )
135131, 134mpbii 211 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
card `  a )  =  a  ->  ( om  C_  a  <->  Lim  a ) )
136130, 135sylbir 213 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( a  e.  On  /\  A. m  e.  a  m 
~<  a )  ->  ( om  C_  a  <->  Lim  a ) )
137136biimpa 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  m  ~<  a )  /\  om  C_  a )  ->  Lim  a )
13817, 127, 129, 137syl21anc 1225 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  Lim  a )
139138adantr 463 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  Lim  a )
140 limsuc 6657 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( Lim  a  ->  ( M  e.  a  <->  suc  M  e.  a ) )
141139, 140syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( M  e.  a  <->  suc  M  e.  a ) )
142125, 141mpbid 210 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  suc  M  e.  a )
143 onelon 4892 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( a  e.  On  /\  suc  M  e.  a )  ->  suc  M  e.  On )
144112, 142, 143syl2anc 659 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  suc  M  e.  On )
1451443adant3 1014 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  ->  suc  M  e.  On )
146 ssun1 3653 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 1st `  z )  C_  (
( 1st `  z
)  u.  ( 2nd `  z ) )
147146a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
( 1st `  z
)  C_  ( ( 1st `  z )  u.  ( 2nd `  z
) ) )
148106simplbi 458 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z Q w  ->  z R w )
149 df-br 4440 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( z R w  <->  <. z ,  w >.  e.  R
)
15023eleq2i 2532 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( <.
z ,  w >.  e.  R  <->  <. z ,  w >.  e.  { <. z ,  w >.  |  (
( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  ( ( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) ) ) } )
151 opabid 4743 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( <.
z ,  w >.  e. 
{ <. z ,  w >.  |  ( ( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  (
( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) ) ) }  <-> 
( ( z  e.  ( On  X.  On )  /\  w  e.  ( On  X.  On ) )  /\  ( ( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) ) ) )
152149, 150, 1513bitri 271 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( z R w  <->  ( (
z  e.  ( On 
X.  On )  /\  w  e.  ( On  X.  On ) )  /\  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w )  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z
) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  /\  z L w ) ) ) )
153152simprbi 462 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( z R w  ->  (
( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) ) )
154 simpl 455 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( 1st `  z
)  u.  ( 2nd `  z ) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  /\  z L w )  -> 
( ( 1st `  z
)  u.  ( 2nd `  z ) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) )
155154orim2i 516 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  /\  z L w ) )  ->  (
( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( 1st `  z
)  u.  ( 2nd `  z ) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) ) )
156153, 155syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z R w  ->  (
( ( 1st `  z
)  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w
)  u.  ( 2nd `  w ) )  \/  ( ( 1st `  z
)  u.  ( 2nd `  z ) )  =  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) ) )
157 fvex 5858 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( 1st `  z )  e.  _V
158 fvex 5858 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( 2nd `  z )  e.  _V
159157, 158unex 6571 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 1st `  z )  u.  ( 2nd `  z
) )  e.  _V
160159elsuc 4936 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( 1st `  z
)  u.  ( 2nd `  z ) )  e. 
suc  ( ( 1st `  w )  u.  ( 2nd `  w ) )  <-> 
( ( ( 1st `  z )  u.  ( 2nd `  z ) )  e.  ( ( 1st `  w )  u.  ( 2nd `  w ) )  \/  ( ( 1st `  z )  u.  ( 2nd `  z ) )  =  ( ( 1st `  w )  u.  ( 2nd `  w ) ) ) )
161156, 160sylibr 212 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z R w  ->  (
( 1st `  z
)  u.  ( 2nd `  z ) )  e. 
suc  ( ( 1st `  w )  u.  ( 2nd `  w ) ) )
162 suceq 4932 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( M  =  ( ( 1st `  w )  u.  ( 2nd `  w ) )  ->  suc  M  =  suc  ( ( 1st `  w
)  u.  ( 2nd `  w ) ) )
16390, 162ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22  |-  suc  M  =  suc  ( ( 1st `  w )  u.  ( 2nd `  w ) )
164161, 163syl6eleqr 2553 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z R w  ->  (
( 1st `  z
)  u.  ( 2nd `  z ) )  e. 
suc  M )
165103, 148, 1643syl 20 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
( ( 1st `  z
)  u.  ( 2nd `  z ) )  e. 
suc  M )
166 ontr2 4914 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( 1st `  z
)  e.  On  /\  suc  M  e.  On )  ->  ( ( ( 1st `  z ) 
C_  ( ( 1st `  z )  u.  ( 2nd `  z ) )  /\  ( ( 1st `  z )  u.  ( 2nd `  z ) )  e.  suc  M )  ->  ( 1st `  z
)  e.  suc  M
) )
167166imp 427 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( 1st `  z
)  e.  On  /\  suc  M  e.  On )  /\  ( ( 1st `  z )  C_  (
( 1st `  z
)  u.  ( 2nd `  z ) )  /\  ( ( 1st `  z
)  u.  ( 2nd `  z ) )  e. 
suc  M ) )  ->  ( 1st `  z
)  e.  suc  M
)
168117, 145, 147, 165, 167syl22anc 1227 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
( 1st `  z
)  e.  suc  M
)
169 xp2nd 6804 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  ( a  X.  a )  ->  ( 2nd `  z )  e.  a )
170 onelon 4892 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( a  e.  On  /\  ( 2nd `  z )  e.  a )  -> 
( 2nd `  z
)  e.  On )
171169, 170sylan2 472 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( a  e.  On  /\  z  e.  ( a  X.  a ) )  -> 
( 2nd `  z
)  e.  On )
172113, 110, 171syl2anc 659 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
( 2nd `  z
)  e.  On )
173 ssun2 3654 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 2nd `  z )  C_  (
( 1st `  z
)  u.  ( 2nd `  z ) )
174173a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
( 2nd `  z
)  C_  ( ( 1st `  z )  u.  ( 2nd `  z
) ) )
175 ontr2 4914 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( 2nd `  z
)  e.  On  /\  suc  M  e.  On )  ->  ( ( ( 2nd `  z ) 
C_  ( ( 1st `  z )  u.  ( 2nd `  z ) )  /\  ( ( 1st `  z )  u.  ( 2nd `  z ) )  e.  suc  M )  ->  ( 2nd `  z
)  e.  suc  M
) )
176175imp 427 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( 2nd `  z
)  e.  On  /\  suc  M  e.  On )  /\  ( ( 2nd `  z )  C_  (
( 1st `  z
)  u.  ( 2nd `  z ) )  /\  ( ( 1st `  z
)  u.  ( 2nd `  z ) )  e. 
suc  M ) )  ->  ( 2nd `  z
)  e.  suc  M
)
177172, 145, 174, 165, 176syl22anc 1227 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
( 2nd `  z
)  e.  suc  M
)
178 elxp7 6806 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  ( suc  M  X.  suc  M )  <->  ( z  e.  ( _V  X.  _V )  /\  ( ( 1st `  z )  e.  suc  M  /\  ( 2nd `  z
)  e.  suc  M
) ) )
179178biimpri 206 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  ( _V 
X.  _V )  /\  (
( 1st `  z
)  e.  suc  M  /\  ( 2nd `  z
)  e.  suc  M
) )  ->  z  e.  ( suc  M  X.  suc  M ) )
180111, 168, 177, 179syl12anc 1224 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  w  e.  ( a  X.  a
)  /\  z  e.  ( `' Q " { w } ) )  -> 
z  e.  ( suc 
M  X.  suc  M
) )
1811803expia 1196 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  (
z  e.  ( `' Q " { w } )  ->  z  e.  ( suc  M  X.  suc  M ) ) )
182181ssrdv 3495 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' Q " { w } )  C_  ( suc  M  X.  suc  M
) )
183 ssdomg 7554 . . . . . . . . . . . . . . . 16  |-  ( ( suc  M  X.  suc  M )  e.  _V  ->  ( ( `' Q " { w } ) 
C_  ( suc  M  X.  suc  M )  -> 
( `' Q " { w } )  ~<_  ( suc  M  X.  suc  M ) ) )
18496, 182, 183mpsyl 63 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' Q " { w } )  ~<_  ( suc 
M  X.  suc  M
) )
185129adantr 463 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  om  C_  a
)
186 nnfi 7703 . . . . . . . . . . . . . . . . . . . 20  |-  ( suc 
M  e.  om  ->  suc 
M  e.  Fin )
187 xpfi 7783 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( suc  M  e.  Fin  /\ 
suc  M  e.  Fin )  ->  ( suc  M  X.  suc  M )  e. 
Fin )
188187anidms 643 . . . . . . . . . . . . . . . . . . . . 21  |-  ( suc 
M  e.  Fin  ->  ( suc  M  X.  suc  M )  e.  Fin )
189 isfinite 8060 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( suc  M  X.  suc  M )  e.  Fin  <->  ( suc  M  X.  suc  M ) 
~<  om )
190188, 189sylib 196 . . . . . . . . . . . . . . . . . . . 20  |-  ( suc 
M  e.  Fin  ->  ( suc  M  X.  suc  M )  ~<  om )
191186, 190syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( suc 
M  e.  om  ->  ( suc  M  X.  suc  M )  ~<  om )
192 ssdomg 7554 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  e.  _V  ->  ( om  C_  a  ->  om  ~<_  a ) )
19314, 192ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( om  C_  a  ->  om  ~<_  a )
194 sdomdomtr 7643 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( suc  M  X.  suc  M )  ~<  om  /\  om  ~<_  a )  ->  ( suc  M  X.  suc  M
)  ~<  a )
195191, 193, 194syl2an 475 . . . . . . . . . . . . . . . . . 18  |-  ( ( suc  M  e.  om  /\ 
om  C_  a )  -> 
( suc  M  X.  suc  M )  ~<  a
)
196195expcom 433 . . . . . . . . . . . . . . . . 17  |-  ( om  C_  a  ->  ( suc 
M  e.  om  ->  ( suc  M  X.  suc  M )  ~<  a )
)
197185, 196syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( suc  M  e.  om  ->  ( suc  M  X.  suc  M )  ~<  a )
)
198127adantr 463 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  A. m  e.  a  m  ~<  a )
199 breq1 4442 . . . . . . . . . . . . . . . . . . 19  |-  ( m  =  suc  M  -> 
( m  ~<  a  <->  suc 
M  ~<  a ) )
200199rspccv 3204 . . . . . . . . . . . . . . . . . 18  |-  ( A. m  e.  a  m  ~<  a  ->  ( suc  M  e.  a  ->  suc  M 
~<  a ) )
201198, 142, 200sylc 60 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  suc  M 
~<  a )
202 omelon 8054 . . . . . . . . . . . . . . . . . . 19  |-  om  e.  On
203 ontri1 4901 . . . . . . . . . . . . . . . . . . 19  |-  ( ( om  e.  On  /\  suc  M  e.  On )  ->  ( om  C_  suc  M  <->  -.  suc  M  e.  om ) )
204202, 144, 203sylancr 661 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( om  C_  suc  M  <->  -.  suc  M  e.  om ) )
205 simplr 753 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  A. m  e.  a  m  ~<  a ) )  ->  A. m  e.  a  ( om  C_  m  ->  ( m  X.  m )  ~~  m
) )
20613, 205sylbi 195 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)
207206adantr 463 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  A. m  e.  a  ( om  C_  m  ->  ( m  X.  m )  ~~  m
) )
208 sseq2 3511 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  =  suc  M  -> 
( om  C_  m  <->  om  C_  suc  M ) )
209 xpeq12 5007 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( m  =  suc  M  /\  m  =  suc  M )  ->  ( m  X.  m )  =  ( suc  M  X.  suc  M ) )
210209anidms 643 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  =  suc  M  -> 
( m  X.  m
)  =  ( suc 
M  X.  suc  M
) )
211 id 22 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  =  suc  M  ->  m  =  suc  M )
212210, 211breq12d 4452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  =  suc  M  -> 
( ( m  X.  m )  ~~  m  <->  ( suc  M  X.  suc  M )  ~~  suc  M
) )
213208, 212imbi12d 318 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  =  suc  M  -> 
( ( om  C_  m  ->  ( m  X.  m
)  ~~  m )  <->  ( om  C_  suc  M  -> 
( suc  M  X.  suc  M )  ~~  suc  M ) ) )
214213rspccv 3204 . . . . . . . . . . . . . . . . . . 19  |-  ( A. m  e.  a  ( om  C_  m  ->  (
m  X.  m ) 
~~  m )  -> 
( suc  M  e.  a  ->  ( om  C_  suc  M  ->  ( suc  M  X.  suc  M )  ~~  suc  M ) ) )
215207, 142, 214sylc 60 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( om  C_  suc  M  -> 
( suc  M  X.  suc  M )  ~~  suc  M ) )
216204, 215sylbird 235 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( -.  suc  M  e.  om  ->  ( suc  M  X.  suc  M )  ~~  suc  M ) )
217 ensdomtr 7646 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( suc  M  X.  suc  M )  ~~  suc  M  /\  suc  M  ~<  a )  ->  ( suc  M  X.  suc  M ) 
~<  a )
218217expcom 433 . . . . . . . . . . . . . . . . 17  |-  ( suc 
M  ~<  a  ->  (
( suc  M  X.  suc  M )  ~~  suc  M  ->  ( suc  M  X.  suc  M )  ~< 
a ) )
219201, 216, 218sylsyld 56 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( -.  suc  M  e.  om  ->  ( suc  M  X.  suc  M )  ~<  a
) )
220197, 219pm2.61d 158 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( suc  M  X.  suc  M
)  ~<  a )
221 domsdomtr 7645 . . . . . . . . . . . . . . 15  |-  ( ( ( `' Q " { w } )  ~<_  ( suc  M  X.  suc  M )  /\  ( suc  M  X.  suc  M
)  ~<  a )  -> 
( `' Q " { w } ) 
~<  a )
222184, 220, 221syl2anc 659 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' Q " { w } )  ~<  a
)
223 ensdomtr 7646 . . . . . . . . . . . . . 14  |-  ( ( ( `' J `  w )  ~~  ( `' Q " { w } )  /\  ( `' Q " { w } )  ~<  a
)  ->  ( `' J `  w )  ~<  a )
22489, 222, 223syl2anc 659 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' J `  w ) 
~<  a )
225 ordelon 4891 . . . . . . . . . . . . . . 15  |-  ( ( Ord  dom  J  /\  ( `' J `  w )  e.  dom  J )  ->  ( `' J `  w )  e.  On )
22677, 80, 225sylancr 661 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' J `  w )  e.  On )
227 onenon 8321 . . . . . . . . . . . . . . 15  |-  ( a  e.  On  ->  a  e.  dom  card )
228112, 227syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  a  e.  dom  card )
229 cardsdomel 8346 . . . . . . . . . . . . . 14  |-  ( ( ( `' J `  w )  e.  On  /\  a  e.  dom  card )  ->  ( ( `' J `  w ) 
~<  a  <->  ( `' J `  w )  e.  (
card `  a )
) )
230226, 228, 229syl2anc 659 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  (
( `' J `  w )  ~<  a  <->  ( `' J `  w )  e.  ( card `  a
) ) )
231224, 230mpbid 210 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' J `  w )  e.  ( card `  a
) )
232 eleq2 2527 . . . . . . . . . . . . . 14  |-  ( (
card `  a )  =  a  ->  ( ( `' J `  w )  e.  ( card `  a
)  <->  ( `' J `  w )  e.  a ) )
233130, 232sylbir 213 . . . . . . . . . . . . 13  |-  ( ( a  e.  On  /\  A. m  e.  a  m 
~<  a )  ->  (
( `' J `  w )  e.  (
card `  a )  <->  ( `' J `  w )  e.  a ) )
234112, 198, 233syl2anc 659 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  (
( `' J `  w )  e.  (
card `  a )  <->  ( `' J `  w )  e.  a ) )
235231, 234mpbid 210 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  ( a  X.  a
) )  ->  ( `' J `  w )  e.  a )
236235ralrimiva 2868 . . . . . . . . . 10  |-  ( ph  ->  A. w  e.  ( a  X.  a ) ( `' J `  w )  e.  a )
237 fnfvrnss 6035 . . . . . . . . . . 11  |-  ( ( `' J  Fn  (
a  X.  a )  /\  A. w  e.  ( a  X.  a
) ( `' J `  w )  e.  a )  ->  ran  `' J  C_  a )
238 ssdomg 7554 . . . . . . . . . . 11  |-  ( a  e.  _V  ->  ( ran  `' J  C_  a  ->  ran  `' J  ~<_  a )
)
23914, 237, 238mpsyl 63 . . . . . . . . . 10  |-  ( ( `' J  Fn  (
a  X.  a )  /\  A. w  e.  ( a  X.  a
) ( `' J `  w )  e.  a )  ->  ran  `' J  ~<_  a )
24045, 236, 239syl2anc 659 . . . . . . . . 9  |-  ( ph  ->  ran  `' J  ~<_  a )
241 endomtr 7566 . . . . . . . . 9  |-  ( ( ( a  X.  a
)  ~~  ran  `' J  /\  ran  `' J  ~<_  a )  ->  ( a  X.  a )  ~<_  a )
24243, 240, 241syl2anc 659 . . . . . . . 8  |-  ( ph  ->  ( a  X.  a
)  ~<_  a )
24313, 242sylbir 213 . . . . . . 7  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  A. m  e.  a  m  ~<  a ) )  ->  (
a  X.  a )  ~<_  a )
244 df1o2 7134 . . . . . . . . . . . 12  |-  1o  =  { (/) }
245 1onn 7280 . . . . . . . . . . . 12  |-  1o  e.  om
246244, 245eqeltrri 2539 . . . . . . . . . . 11  |-  { (/) }  e.  om
247 nnsdom 8061 . . . . . . . . . . 11  |-  ( {
(/) }  e.  om  ->  { (/) }  ~<  om )
248 sdomdom 7536 . . . . . . . . . . 11  |-  ( {
(/) }  ~<  om  ->  {
(/) }  ~<_  om )
249246, 247, 248mp2b 10 . . . . . . . . . 10  |-  { (/) }  ~<_  om
250 domtr 7561 . . . . . . . . . 10  |-  ( ( { (/) }  ~<_  om  /\  om  ~<_  a )  ->  { (/) }  ~<_  a )
251249, 193, 250sylancr 661 . . . . . . . . 9  |-  ( om  C_  a  ->  { (/) }  ~<_  a )
252 0ex 4569 . . . . . . . . . . . 12  |-  (/)  e.  _V
25314, 252xpsnen 7594 . . . . . . . . . . 11  |-  ( a  X.  { (/) } ) 
~~  a
254253ensymi 7558 . . . . . . . . . 10  |-  a  ~~  ( a  X.  { (/)
} )
25514xpdom2 7605 . . . . . . . . . 10  |-  ( {
(/) }  ~<_  a  ->  ( a  X.  { (/) } )  ~<_  ( a  X.  a ) )
256 endomtr 7566 . . . . . . . . . 10  |-  ( ( a  ~~  ( a  X.  { (/) } )  /\  ( a  X. 
{ (/) } )  ~<_  ( a  X.  a ) )  ->  a  ~<_  ( a  X.  a ) )
257254, 255, 256sylancr 661 . . . . . . . . 9  |-  ( {
(/) }  ~<_  a  ->  a  ~<_  ( a  X.  a
) )
258251, 257syl 16 . . . . . . . 8  |-  ( om  C_  a  ->  a  ~<_  ( a  X.  a ) )
259258ad2antrl 725 . . . . . . 7  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  A. m  e.  a  m  ~<  a ) )  ->  a  ~<_  ( a  X.  a
) )
260 sbth 7630 . . . . . . 7  |-  ( ( ( a  X.  a
)  ~<_  a  /\  a  ~<_  ( a  X.  a
) )  ->  (
a  X.  a ) 
~~  a )
261243, 259, 260syl2anc 659 . . . . . 6  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  A. m  e.  a  m  ~<  a ) )  ->  (
a  X.  a ) 
~~  a )
262261expr 613 . . . . 5  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  om  C_  a
)  ->  ( A. m  e.  a  m  ~<  a  ->  ( a  X.  a )  ~~  a
) )
263 simplr 753 . . . . . . . 8  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  -.  A. m  e.  a  m  ~<  a ) )  ->  A. m  e.  a 
( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)
264 simpll 751 . . . . . . . . 9  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  -.  A. m  e.  a  m  ~<  a ) )  -> 
a  e.  On )
265 simprr 755 . . . . . . . . 9  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  -.  A. m  e.  a  m  ~<  a ) )  ->  -.  A. m  e.  a  m  ~<  a )
266 rexnal 2902 . . . . . . . . . 10  |-  ( E. m  e.  a  -.  m  ~<  a  <->  -.  A. m  e.  a  m  ~<  a )
267 onelss 4909 . . . . . . . . . . . . 13  |-  ( a  e.  On  ->  (
m  e.  a  ->  m  C_  a ) )
268 ssdomg 7554 . . . . . . . . . . . . 13  |-  ( a  e.  On  ->  (
m  C_  a  ->  m  ~<_  a ) )
269267, 268syld 44 . . . . . . . . . . . 12  |-  ( a  e.  On  ->  (
m  e.  a  ->  m  ~<_  a ) )
270 bren2 7539 . . . . . . . . . . . . 13  |-  ( m 
~~  a  <->  ( m  ~<_  a  /\  -.  m  ~<  a ) )
271270simplbi2 623 . . . . . . . . . . . 12  |-  ( m  ~<_  a  ->  ( -.  m  ~<  a  ->  m  ~~  a ) )
272269, 271syl6 33 . . . . . . . . . . 11  |-  ( a  e.  On  ->  (
m  e.  a  -> 
( -.  m  ~<  a  ->  m  ~~  a
) ) )
273272reximdvai 2926 . . . . . . . . . 10  |-  ( a  e.  On  ->  ( E. m  e.  a  -.  m  ~<  a  ->  E. m  e.  a  m  ~~  a ) )
274266, 273syl5bir 218 . . . . . . . . 9  |-  ( a  e.  On  ->  ( -.  A. m  e.  a  m  ~<  a  ->  E. m  e.  a  m 
~~  a ) )
275264, 265, 274sylc 60 . . . . . . . 8  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  -.  A. m  e.  a  m  ~<  a ) )  ->  E. m  e.  a  m  ~~  a )
276 r19.29 2989 . . . . . . . 8  |-  ( ( A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )  /\  E. m  e.  a  m  ~~  a )  ->  E. m  e.  a  ( ( om  C_  m  ->  ( m  X.  m
)  ~~  m )  /\  m  ~~  a ) )
277263, 275, 276syl2anc 659 . . . . . . 7  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  -.  A. m  e.  a  m  ~<  a ) )  ->  E. m  e.  a 
( ( om  C_  m  ->  ( m  X.  m
)  ~~  m )  /\  m  ~~  a ) )
278 simprl 754 . . . . . . . 8  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  -.  A. m  e.  a  m  ~<  a ) )  ->  om  C_  a )
279 onelon 4892 . . . . . . . . . . . . . . . . 17  |-  ( ( a  e.  On  /\  m  e.  a )  ->  m  e.  On )
280 ensym 7557 . . . . . . . . . . . . . . . . . 18  |-  ( m 
~~  a  ->  a  ~~  m )
281 domentr 7567 . . . . . . . . . . . . . . . . . 18  |-  ( ( om  ~<_  a  /\  a  ~~  m )  ->  om  ~<_  m )
282193, 280, 281syl2an 475 . . . . . . . . . . . . . . . . 17  |-  ( ( om  C_  a  /\  m  ~~  a )  ->  om 
~<_  m )
283 domnsym 7636 . . . . . . . . . . . . . . . . . . 19  |-  ( om  ~<_  m  ->  -.  m  ~<  om )
284 nnsdom 8061 . . . . . . . . . . . . . . . . . . 19  |-  ( m  e.  om  ->  m  ~<  om )
285283, 284nsyl 121 . . . . . . . . . . . . . . . . . 18  |-  ( om  ~<_  m  ->  -.  m  e.  om )
286 ontri1 4901 . . . . . . . . . . . . . . . . . . 19  |-  ( ( om  e.  On  /\  m  e.  On )  ->  ( om  C_  m  <->  -.  m  e.  om )
)
287202, 286mpan 668 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  On  ->  ( om  C_  m  <->  -.  m  e.  om ) )
288285, 287syl5ibr 221 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  On  ->  ( om 
~<_  m  ->  om  C_  m
) )
289279, 282, 288syl2im 38 . . . . . . . . . . . . . . . 16  |-  ( ( a  e.  On  /\  m  e.  a )  ->  ( ( om  C_  a  /\  m  ~~  a )  ->  om  C_  m ) )
290289expd 434 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  On  /\  m  e.  a )  ->  ( om  C_  a  ->  ( m  ~~  a  ->  om  C_  m )
) )
291290impcom 428 . . . . . . . . . . . . . 14  |-  ( ( om  C_  a  /\  ( a  e.  On  /\  m  e.  a ) )  ->  ( m  ~~  a  ->  om  C_  m
) )
292291imim1d 75 . . . . . . . . . . . . 13  |-  ( ( om  C_  a  /\  ( a  e.  On  /\  m  e.  a ) )  ->  ( ( om  C_  m  ->  (
m  X.  m ) 
~~  m )  -> 
( m  ~~  a  ->  ( m  X.  m
)  ~~  m )
) )
293292imp32 431 . . . . . . . . . . . 12  |-  ( ( ( om  C_  a  /\  ( a  e.  On  /\  m  e.  a ) )  /\  ( ( om  C_  m  ->  ( m  X.  m ) 
~~  m )  /\  m  ~~  a ) )  ->  ( m  X.  m )  ~~  m
)
294 entr 7560 . . . . . . . . . . . . . . . 16  |-  ( ( ( m  X.  m
)  ~~  m  /\  m  ~~  a )  -> 
( m  X.  m
)  ~~  a )
295294ancoms 451 . . . . . . . . . . . . . . 15  |-  ( ( m  ~~  a  /\  ( m  X.  m
)  ~~  m )  ->  ( m  X.  m
)  ~~  a )
296 xpen 7673 . . . . . . . . . . . . . . . . . 18  |-  ( ( a  ~~  m  /\  a  ~~  m )  -> 
( a  X.  a
)  ~~  ( m  X.  m ) )
297296anidms 643 . . . . . . . . . . . . . . . . 17  |-  ( a 
~~  m  ->  (
a  X.  a ) 
~~  ( m  X.  m ) )
298 entr 7560 . . . . . . . . . . . . . . . . 17  |-  ( ( ( a  X.  a
)  ~~  ( m  X.  m )  /\  (
m  X.  m ) 
~~  a )  -> 
( a  X.  a
)  ~~  a )
299297, 298sylan 469 . . . . . . . . . . . . . . . 16  |-  ( ( a  ~~  m  /\  ( m  X.  m
)  ~~  a )  ->  ( a  X.  a
)  ~~  a )
300280, 299sylan 469 . . . . . . . . . . . . . . 15  |-  ( ( m  ~~  a  /\  ( m  X.  m
)  ~~  a )  ->  ( a  X.  a
)  ~~  a )
301295, 300syldan 468 . . . . . . . . . . . . . 14  |-  ( ( m  ~~  a  /\  ( m  X.  m
)  ~~  m )  ->  ( a  X.  a
)  ~~  a )
302301ex 432 . . . . . . . . . . . . 13  |-  ( m 
~~  a  ->  (
( m  X.  m
)  ~~  m  ->  ( a  X.  a ) 
~~  a ) )
303302ad2antll 726 . . . . . . . . . . . 12  |-  ( ( ( om  C_  a  /\  ( a  e.  On  /\  m  e.  a ) )  /\  ( ( om  C_  m  ->  ( m  X.  m ) 
~~  m )  /\  m  ~~  a ) )  ->  ( ( m  X.  m )  ~~  m  ->  ( a  X.  a )  ~~  a
) )
304293, 303mpd 15 . . . . . . . . . . 11  |-  ( ( ( om  C_  a  /\  ( a  e.  On  /\  m  e.  a ) )  /\  ( ( om  C_  m  ->  ( m  X.  m ) 
~~  m )  /\  m  ~~  a ) )  ->  ( a  X.  a )  ~~  a
)
305304ex 432 . . . . . . . . . 10  |-  ( ( om  C_  a  /\  ( a  e.  On  /\  m  e.  a ) )  ->  ( (
( om  C_  m  ->  ( m  X.  m
)  ~~  m )  /\  m  ~~  a )  ->  ( a  X.  a )  ~~  a
) )
306305expr 613 . . . . . . . . 9  |-  ( ( om  C_  a  /\  a  e.  On )  ->  ( m  e.  a  ->  ( ( ( om  C_  m  ->  ( m  X.  m ) 
~~  m )  /\  m  ~~  a )  -> 
( a  X.  a
)  ~~  a )
) )
307306rexlimdv 2944 . . . . . . . 8  |-  ( ( om  C_  a  /\  a  e.  On )  ->  ( E. m  e.  a  ( ( om  C_  m  ->  ( m  X.  m )  ~~  m )  /\  m  ~~  a )  ->  (
a  X.  a ) 
~~  a ) )
308278, 264, 307syl2anc 659 . . . . . . 7  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  -.  A. m  e.  a  m  ~<  a ) )  -> 
( E. m  e.  a  ( ( om  C_  m  ->  ( m  X.  m )  ~~  m )  /\  m  ~~  a )  ->  (
a  X.  a ) 
~~  a ) )
309277, 308mpd 15 . . . . . 6  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  ( om  C_  a  /\  -.  A. m  e.  a  m  ~<  a ) )  -> 
( a  X.  a
)  ~~  a )
310309expr 613 . . . . 5  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  om  C_  a
)  ->  ( -.  A. m  e.  a  m 
~<  a  ->  ( a  X.  a )  ~~  a ) )
311262, 310pm2.61d 158 . . . 4  |-  ( ( ( a  e.  On  /\ 
A. m  e.  a  ( om  C_  m  ->  ( m  X.  m
)  ~~  m )
)  /\  om  C_  a
)  ->  ( a  X.  a )  ~~  a
)
312311exp31 602 . . 3  |-  ( a  e.  On  ->  ( A. m  e.  a 
( om  C_  m  ->  ( m  X.  m
)  ~~  m )  ->  ( om  C_  a  ->  ( a  X.  a
)  ~~  a )
) )
3136, 12, 312tfis3 6665 . 2  |-  ( A  e.  On  ->  ( om  C_  A  ->  ( A  X.  A )  ~~  A ) )
314313imp 427 1  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( A  X.  A )  ~~  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   A.wral 2804   E.wrex 2805   _Vcvv 3106    u. cun 3459    i^i cin 3460    C_ wss 3461   (/)c0 3783   {csn 4016   <.cop 4022   class class class wbr 4439   {copab 4496    _E cep 4778   Se wse 4825    We wwe 4826   Ord word 4866   Oncon0 4867   Lim wlim 4868   suc csuc 4869    X. cxp 4986   `'ccnv 4987   dom cdm 4988   ran crn 4989    |` cres 4990   "cima 4991    Fn wfn 5565   -->wf 5566   -1-1->wf1 5567   -1-1-onto->wf1o 5569   ` cfv 5570    Isom wiso 5571   omcom 6673   1stc1st 6771   2ndc2nd 6772   1oc1o 7115    ~~ cen 7506    ~<_ cdom 7507    ~< csdm 7508   Fincfn 7509  OrdIsocoi 7926   cardccrd 8307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-oi 7927  df-card 8311
This theorem is referenced by:  infxpen  8383
  Copyright terms: Public domain W3C validator