Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  limeq Structured version   Visualization version   GIF version

Theorem limeq 5652
 Description: Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
limeq (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵))

Proof of Theorem limeq
StepHypRef Expression
1 ordeq 5647 . . 3 (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵))
2 neeq1 2844 . . 3 (𝐴 = 𝐵 → (𝐴 ≠ ∅ ↔ 𝐵 ≠ ∅))
3 id 22 . . . 4 (𝐴 = 𝐵𝐴 = 𝐵)
4 unieq 4380 . . . 4 (𝐴 = 𝐵 𝐴 = 𝐵)
53, 4eqeq12d 2625 . . 3 (𝐴 = 𝐵 → (𝐴 = 𝐴𝐵 = 𝐵))
61, 2, 53anbi123d 1391 . 2 (𝐴 = 𝐵 → ((Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) ↔ (Ord 𝐵𝐵 ≠ ∅ ∧ 𝐵 = 𝐵)))
7 df-lim 5645 . 2 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
8 df-lim 5645 . 2 (Lim 𝐵 ↔ (Ord 𝐵𝐵 ≠ ∅ ∧ 𝐵 = 𝐵))
96, 7, 83bitr4g 302 1 (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ w3a 1031   = wceq 1475   ≠ wne 2780  ∅c0 3874  ∪ cuni 4372  Ord word 5639  Lim wlim 5641 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-in 3547  df-ss 3554  df-uni 4373  df-tr 4681  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-ord 5643  df-lim 5645 This theorem is referenced by:  limuni2  5703  0ellim  5704  limuni3  6944  tfinds2  6955  dfom2  6959  limomss  6962  nnlim  6970  limom  6972  ssnlim  6975  onfununi  7325  tfr1a  7377  tz7.44lem1  7388  tz7.44-2  7390  tz7.44-3  7391  oeeulem  7568  limensuc  8022  elom3  8428  r1funlim  8512  rankxplim2  8626  rankxplim3  8627  rankxpsuc  8628  infxpenlem  8719  alephislim  8789  cflim2  8968  winalim  9396  rankcf  9478  gruina  9519  rdgprc0  30943  dfrdg2  30945  dfrdg4  31228  limsucncmpi  31614  limsucncmp  31615
 Copyright terms: Public domain W3C validator