Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oicl Structured version   Visualization version   GIF version

Theorem oicl 8317
 Description: The order type of the well-order 𝑅 on 𝐴 is an ordinal. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Hypothesis
Ref Expression
oicl.1 𝐹 = OrdIso(𝑅, 𝐴)
Assertion
Ref Expression
oicl Ord dom 𝐹

Proof of Theorem oicl
Dummy variables 𝑢 𝑡 𝑣 𝑥 𝑗 𝑤 𝑧 𝑓 𝑖 𝑟 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . . 5 recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) = recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)))
2 eqid 2610 . . . . 5 {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
3 eqid 2610 . . . . 5 ( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)) = ( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))
41, 2, 3ordtypecbv 8305 . . . 4 recs((𝑓 ∈ V ↦ (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))) = recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)))
5 eqid 2610 . . . 4 {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs((𝑓 ∈ V ↦ (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))) “ 𝑥)𝑧𝑅𝑡} = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs((𝑓 ∈ V ↦ (𝑠 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))) “ 𝑥)𝑧𝑅𝑡}
6 oicl.1 . . . 4 𝐹 = OrdIso(𝑅, 𝐴)
7 simpl 472 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 We 𝐴)
8 simpr 476 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Se 𝐴)
94, 2, 3, 5, 6, 7, 8ordtypelem5 8310 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴) → (Ord dom 𝐹𝐹:dom 𝐹𝐴))
109simpld 474 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → Ord dom 𝐹)
11 ord0 5694 . . 3 Ord ∅
126oi0 8316 . . . . . 6 (¬ (𝑅 We 𝐴𝑅 Se 𝐴) → 𝐹 = ∅)
1312dmeqd 5248 . . . . 5 (¬ (𝑅 We 𝐴𝑅 Se 𝐴) → dom 𝐹 = dom ∅)
14 dm0 5260 . . . . 5 dom ∅ = ∅
1513, 14syl6eq 2660 . . . 4 (¬ (𝑅 We 𝐴𝑅 Se 𝐴) → dom 𝐹 = ∅)
16 ordeq 5647 . . . 4 (dom 𝐹 = ∅ → (Ord dom 𝐹 ↔ Ord ∅))
1715, 16syl 17 . . 3 (¬ (𝑅 We 𝐴𝑅 Se 𝐴) → (Ord dom 𝐹 ↔ Ord ∅))
1811, 17mpbiri 247 . 2 (¬ (𝑅 We 𝐴𝑅 Se 𝐴) → Ord dom 𝐹)
1910, 18pm2.61i 175 1 Ord dom 𝐹
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 195   ∧ wa 383   = wceq 1475  ∀wral 2896  ∃wrex 2897  {crab 2900  Vcvv 3173  ∅c0 3874   class class class wbr 4583   ↦ cmpt 4643   Se wse 4995   We wwe 4996  dom cdm 5038  ran crn 5039   “ cima 5041  Ord word 5639  Oncon0 5640  ⟶wf 5800  ℩crio 6510  recscrecs 7354  OrdIsocoi 8297 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-wrecs 7294  df-recs 7355  df-oi 8298 This theorem is referenced by:  oion  8324  oieu  8327  oismo  8328  oiid  8329  wofib  8333  cantnflt  8452  cantnfp1lem3  8460  cantnflem1b  8466  cantnflem1  8469  wemapwe  8477  cnfcomlem  8479  cnfcom  8480  cnfcom2lem  8481  infxpenlem  8719  hsmexlem1  9131  fpwwe2lem8  9338  fpwwe2lem9  9339  fpwwe2lem10  9340
 Copyright terms: Public domain W3C validator