MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atanlogsublem Structured version   Visualization version   GIF version

Theorem atanlogsublem 24442
Description: Lemma for atanlogsub 24443. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
atanlogsublem ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))

Proof of Theorem atanlogsublem
StepHypRef Expression
1 ax-1cn 9873 . . . . . 6 1 ∈ ℂ
2 ax-icn 9874 . . . . . . 7 i ∈ ℂ
3 simpl 472 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 𝐴 ∈ dom arctan)
4 atandm2 24404 . . . . . . . . 9 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
53, 4sylib 207 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
65simp1d 1066 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
7 mulcl 9899 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
82, 6, 7sylancr 694 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · 𝐴) ∈ ℂ)
9 addcl 9897 . . . . . 6 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
101, 8, 9sylancr 694 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (1 + (i · 𝐴)) ∈ ℂ)
115simp3d 1068 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (1 + (i · 𝐴)) ≠ 0)
1210, 11logcld 24121 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(1 + (i · 𝐴))) ∈ ℂ)
13 subcl 10159 . . . . . 6 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
141, 8, 13sylancr 694 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (1 − (i · 𝐴)) ∈ ℂ)
155simp2d 1067 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (1 − (i · 𝐴)) ≠ 0)
1614, 15logcld 24121 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(1 − (i · 𝐴))) ∈ ℂ)
1712, 16imsubd 13805 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = ((ℑ‘(log‘(1 + (i · 𝐴)))) − (ℑ‘(log‘(1 − (i · 𝐴))))))
182a1i 11 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → i ∈ ℂ)
1918, 6, 18subdid 10365 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · (𝐴 − i)) = ((i · 𝐴) − (i · i)))
20 ixi 10535 . . . . . . . . . . 11 (i · i) = -1
2120oveq2i 6560 . . . . . . . . . 10 ((i · 𝐴) − (i · i)) = ((i · 𝐴) − -1)
22 subneg 10209 . . . . . . . . . . 11 (((i · 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · 𝐴) − -1) = ((i · 𝐴) + 1))
238, 1, 22sylancl 693 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((i · 𝐴) − -1) = ((i · 𝐴) + 1))
2421, 23syl5eq 2656 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((i · 𝐴) − (i · i)) = ((i · 𝐴) + 1))
25 addcom 10101 . . . . . . . . . 10 (((i · 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · 𝐴) + 1) = (1 + (i · 𝐴)))
268, 1, 25sylancl 693 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((i · 𝐴) + 1) = (1 + (i · 𝐴)))
2719, 24, 263eqtrd 2648 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · (𝐴 − i)) = (1 + (i · 𝐴)))
2827fveq2d 6107 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(i · (𝐴 − i))) = (log‘(1 + (i · 𝐴))))
29 subcl 10159 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 − i) ∈ ℂ)
306, 2, 29sylancl 693 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (𝐴 − i) ∈ ℂ)
31 resub 13715 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (ℜ‘(𝐴 − i)) = ((ℜ‘𝐴) − (ℜ‘i)))
326, 2, 31sylancl 693 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 − i)) = ((ℜ‘𝐴) − (ℜ‘i)))
33 rei 13744 . . . . . . . . . . . . 13 (ℜ‘i) = 0
3433oveq2i 6560 . . . . . . . . . . . 12 ((ℜ‘𝐴) − (ℜ‘i)) = ((ℜ‘𝐴) − 0)
356recld 13782 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ∈ ℝ)
3635recnd 9947 . . . . . . . . . . . . 13 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ∈ ℂ)
3736subid1d 10260 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℜ‘𝐴) − 0) = (ℜ‘𝐴))
3834, 37syl5eq 2656 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℜ‘𝐴) − (ℜ‘i)) = (ℜ‘𝐴))
3932, 38eqtrd 2644 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 − i)) = (ℜ‘𝐴))
40 gt0ne0 10372 . . . . . . . . . . 11 (((ℜ‘𝐴) ∈ ℝ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ≠ 0)
4135, 40sylancom 698 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ≠ 0)
4239, 41eqnetrd 2849 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 − i)) ≠ 0)
43 fveq2 6103 . . . . . . . . . . 11 ((𝐴 − i) = 0 → (ℜ‘(𝐴 − i)) = (ℜ‘0))
44 re0 13740 . . . . . . . . . . 11 (ℜ‘0) = 0
4543, 44syl6eq 2660 . . . . . . . . . 10 ((𝐴 − i) = 0 → (ℜ‘(𝐴 − i)) = 0)
4645necon3i 2814 . . . . . . . . 9 ((ℜ‘(𝐴 − i)) ≠ 0 → (𝐴 − i) ≠ 0)
4742, 46syl 17 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (𝐴 − i) ≠ 0)
48 simpr 476 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘𝐴))
49 0re 9919 . . . . . . . . . . 11 0 ∈ ℝ
50 ltle 10005 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (0 < (ℜ‘𝐴) → 0 ≤ (ℜ‘𝐴)))
5149, 35, 50sylancr 694 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (0 < (ℜ‘𝐴) → 0 ≤ (ℜ‘𝐴)))
5248, 51mpd 15 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 ≤ (ℜ‘𝐴))
5352, 39breqtrrd 4611 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 ≤ (ℜ‘(𝐴 − i)))
54 logimul 24164 . . . . . . . 8 (((𝐴 − i) ∈ ℂ ∧ (𝐴 − i) ≠ 0 ∧ 0 ≤ (ℜ‘(𝐴 − i))) → (log‘(i · (𝐴 − i))) = ((log‘(𝐴 − i)) + (i · (π / 2))))
5530, 47, 53, 54syl3anc 1318 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(i · (𝐴 − i))) = ((log‘(𝐴 − i)) + (i · (π / 2))))
5628, 55eqtr3d 2646 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(1 + (i · 𝐴))) = ((log‘(𝐴 − i)) + (i · (π / 2))))
5756fveq2d 6107 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 + (i · 𝐴)))) = (ℑ‘((log‘(𝐴 − i)) + (i · (π / 2)))))
5830, 47logcld 24121 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(𝐴 − i)) ∈ ℂ)
59 halfpire 24020 . . . . . . . . 9 (π / 2) ∈ ℝ
6059recni 9931 . . . . . . . 8 (π / 2) ∈ ℂ
612, 60mulcli 9924 . . . . . . 7 (i · (π / 2)) ∈ ℂ
62 imadd 13722 . . . . . . 7 (((log‘(𝐴 − i)) ∈ ℂ ∧ (i · (π / 2)) ∈ ℂ) → (ℑ‘((log‘(𝐴 − i)) + (i · (π / 2)))) = ((ℑ‘(log‘(𝐴 − i))) + (ℑ‘(i · (π / 2)))))
6358, 61, 62sylancl 693 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(𝐴 − i)) + (i · (π / 2)))) = ((ℑ‘(log‘(𝐴 − i))) + (ℑ‘(i · (π / 2)))))
64 reim 13697 . . . . . . . . 9 ((π / 2) ∈ ℂ → (ℜ‘(π / 2)) = (ℑ‘(i · (π / 2))))
6560, 64ax-mp 5 . . . . . . . 8 (ℜ‘(π / 2)) = (ℑ‘(i · (π / 2)))
66 rere 13710 . . . . . . . . 9 ((π / 2) ∈ ℝ → (ℜ‘(π / 2)) = (π / 2))
6759, 66ax-mp 5 . . . . . . . 8 (ℜ‘(π / 2)) = (π / 2)
6865, 67eqtr3i 2634 . . . . . . 7 (ℑ‘(i · (π / 2))) = (π / 2)
6968oveq2i 6560 . . . . . 6 ((ℑ‘(log‘(𝐴 − i))) + (ℑ‘(i · (π / 2)))) = ((ℑ‘(log‘(𝐴 − i))) + (π / 2))
7063, 69syl6eq 2660 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(𝐴 − i)) + (i · (π / 2)))) = ((ℑ‘(log‘(𝐴 − i))) + (π / 2)))
7157, 70eqtrd 2644 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 + (i · 𝐴)))) = ((ℑ‘(log‘(𝐴 − i))) + (π / 2)))
72 addcl 9897 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 + i) ∈ ℂ)
736, 2, 72sylancl 693 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (𝐴 + i) ∈ ℂ)
74 mulcl 9899 . . . . . . . . 9 ((i ∈ ℂ ∧ (𝐴 + i) ∈ ℂ) → (i · (𝐴 + i)) ∈ ℂ)
752, 73, 74sylancr 694 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · (𝐴 + i)) ∈ ℂ)
76 reim 13697 . . . . . . . . . . 11 ((𝐴 + i) ∈ ℂ → (ℜ‘(𝐴 + i)) = (ℑ‘(i · (𝐴 + i))))
7773, 76syl 17 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 + i)) = (ℑ‘(i · (𝐴 + i))))
78 readd 13714 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (ℜ‘(𝐴 + i)) = ((ℜ‘𝐴) + (ℜ‘i)))
796, 2, 78sylancl 693 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 + i)) = ((ℜ‘𝐴) + (ℜ‘i)))
8033oveq2i 6560 . . . . . . . . . . . 12 ((ℜ‘𝐴) + (ℜ‘i)) = ((ℜ‘𝐴) + 0)
8136addid1d 10115 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℜ‘𝐴) + 0) = (ℜ‘𝐴))
8280, 81syl5eq 2656 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℜ‘𝐴) + (ℜ‘i)) = (ℜ‘𝐴))
8379, 82eqtrd 2644 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 + i)) = (ℜ‘𝐴))
8477, 83eqtr3d 2646 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(i · (𝐴 + i))) = (ℜ‘𝐴))
8548, 84breqtrrd 4611 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℑ‘(i · (𝐴 + i))))
86 logneg2 24165 . . . . . . . 8 (((i · (𝐴 + i)) ∈ ℂ ∧ 0 < (ℑ‘(i · (𝐴 + i)))) → (log‘-(i · (𝐴 + i))) = ((log‘(i · (𝐴 + i))) − (i · π)))
8775, 85, 86syl2anc 691 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘-(i · (𝐴 + i))) = ((log‘(i · (𝐴 + i))) − (i · π)))
8818, 6, 18adddid 9943 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · (𝐴 + i)) = ((i · 𝐴) + (i · i)))
8920oveq2i 6560 . . . . . . . . . . . 12 ((i · 𝐴) + (i · i)) = ((i · 𝐴) + -1)
90 negsub 10208 . . . . . . . . . . . . 13 (((i · 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · 𝐴) + -1) = ((i · 𝐴) − 1))
918, 1, 90sylancl 693 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((i · 𝐴) + -1) = ((i · 𝐴) − 1))
9289, 91syl5eq 2656 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((i · 𝐴) + (i · i)) = ((i · 𝐴) − 1))
9388, 92eqtrd 2644 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · (𝐴 + i)) = ((i · 𝐴) − 1))
9493negeqd 10154 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -(i · (𝐴 + i)) = -((i · 𝐴) − 1))
95 negsubdi2 10219 . . . . . . . . . 10 (((i · 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → -((i · 𝐴) − 1) = (1 − (i · 𝐴)))
968, 1, 95sylancl 693 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -((i · 𝐴) − 1) = (1 − (i · 𝐴)))
9794, 96eqtrd 2644 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -(i · (𝐴 + i)) = (1 − (i · 𝐴)))
9897fveq2d 6107 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘-(i · (𝐴 + i))) = (log‘(1 − (i · 𝐴))))
9983, 41eqnetrd 2849 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 + i)) ≠ 0)
100 fveq2 6103 . . . . . . . . . . . . 13 ((𝐴 + i) = 0 → (ℜ‘(𝐴 + i)) = (ℜ‘0))
101100, 44syl6eq 2660 . . . . . . . . . . . 12 ((𝐴 + i) = 0 → (ℜ‘(𝐴 + i)) = 0)
102101necon3i 2814 . . . . . . . . . . 11 ((ℜ‘(𝐴 + i)) ≠ 0 → (𝐴 + i) ≠ 0)
10399, 102syl 17 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (𝐴 + i) ≠ 0)
10452, 83breqtrrd 4611 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 ≤ (ℜ‘(𝐴 + i)))
105 logimul 24164 . . . . . . . . . 10 (((𝐴 + i) ∈ ℂ ∧ (𝐴 + i) ≠ 0 ∧ 0 ≤ (ℜ‘(𝐴 + i))) → (log‘(i · (𝐴 + i))) = ((log‘(𝐴 + i)) + (i · (π / 2))))
10673, 103, 104, 105syl3anc 1318 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(i · (𝐴 + i))) = ((log‘(𝐴 + i)) + (i · (π / 2))))
107106oveq1d 6564 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((log‘(i · (𝐴 + i))) − (i · π)) = (((log‘(𝐴 + i)) + (i · (π / 2))) − (i · π)))
10873, 103logcld 24121 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(𝐴 + i)) ∈ ℂ)
10961a1i 11 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · (π / 2)) ∈ ℂ)
110 picn 24015 . . . . . . . . . . 11 π ∈ ℂ
1112, 110mulcli 9924 . . . . . . . . . 10 (i · π) ∈ ℂ
112111a1i 11 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · π) ∈ ℂ)
113108, 109, 112addsubassd 10291 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((log‘(𝐴 + i)) + (i · (π / 2))) − (i · π)) = ((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π))))
114107, 113eqtrd 2644 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((log‘(i · (𝐴 + i))) − (i · π)) = ((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π))))
11587, 98, 1143eqtr3d 2652 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(1 − (i · 𝐴))) = ((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π))))
116115fveq2d 6107 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 − (i · 𝐴)))) = (ℑ‘((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π)))))
11761, 111subcli 10236 . . . . . . 7 ((i · (π / 2)) − (i · π)) ∈ ℂ
118 imadd 13722 . . . . . . 7 (((log‘(𝐴 + i)) ∈ ℂ ∧ ((i · (π / 2)) − (i · π)) ∈ ℂ) → (ℑ‘((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π)))) = ((ℑ‘(log‘(𝐴 + i))) + (ℑ‘((i · (π / 2)) − (i · π)))))
119108, 117, 118sylancl 693 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π)))) = ((ℑ‘(log‘(𝐴 + i))) + (ℑ‘((i · (π / 2)) − (i · π)))))
120 imsub 13723 . . . . . . . . 9 (((i · (π / 2)) ∈ ℂ ∧ (i · π) ∈ ℂ) → (ℑ‘((i · (π / 2)) − (i · π))) = ((ℑ‘(i · (π / 2))) − (ℑ‘(i · π))))
12161, 111, 120mp2an 704 . . . . . . . 8 (ℑ‘((i · (π / 2)) − (i · π))) = ((ℑ‘(i · (π / 2))) − (ℑ‘(i · π)))
122 reim 13697 . . . . . . . . . . 11 (π ∈ ℂ → (ℜ‘π) = (ℑ‘(i · π)))
123110, 122ax-mp 5 . . . . . . . . . 10 (ℜ‘π) = (ℑ‘(i · π))
124 pire 24014 . . . . . . . . . . 11 π ∈ ℝ
125 rere 13710 . . . . . . . . . . 11 (π ∈ ℝ → (ℜ‘π) = π)
126124, 125ax-mp 5 . . . . . . . . . 10 (ℜ‘π) = π
127123, 126eqtr3i 2634 . . . . . . . . 9 (ℑ‘(i · π)) = π
12868, 127oveq12i 6561 . . . . . . . 8 ((ℑ‘(i · (π / 2))) − (ℑ‘(i · π))) = ((π / 2) − π)
12960negcli 10228 . . . . . . . . 9 -(π / 2) ∈ ℂ
130110, 60negsubi 10238 . . . . . . . . . 10 (π + -(π / 2)) = (π − (π / 2))
131 pidiv2halves 24023 . . . . . . . . . . 11 ((π / 2) + (π / 2)) = π
132110, 60, 60, 131subaddrii 10249 . . . . . . . . . 10 (π − (π / 2)) = (π / 2)
133130, 132eqtri 2632 . . . . . . . . 9 (π + -(π / 2)) = (π / 2)
13460, 110, 129, 133subaddrii 10249 . . . . . . . 8 ((π / 2) − π) = -(π / 2)
135121, 128, 1343eqtri 2636 . . . . . . 7 (ℑ‘((i · (π / 2)) − (i · π))) = -(π / 2)
136135oveq2i 6560 . . . . . 6 ((ℑ‘(log‘(𝐴 + i))) + (ℑ‘((i · (π / 2)) − (i · π)))) = ((ℑ‘(log‘(𝐴 + i))) + -(π / 2))
137119, 136syl6eq 2660 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π)))) = ((ℑ‘(log‘(𝐴 + i))) + -(π / 2)))
138116, 137eqtrd 2644 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 − (i · 𝐴)))) = ((ℑ‘(log‘(𝐴 + i))) + -(π / 2)))
13971, 138oveq12d 6567 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) − (ℑ‘(log‘(1 − (i · 𝐴))))) = (((ℑ‘(log‘(𝐴 − i))) + (π / 2)) − ((ℑ‘(log‘(𝐴 + i))) + -(π / 2))))
14058imcld 13783 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 − i))) ∈ ℝ)
141140recnd 9947 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 − i))) ∈ ℂ)
14260a1i 11 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (π / 2) ∈ ℂ)
143108imcld 13783 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 + i))) ∈ ℝ)
144143recnd 9947 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 + i))) ∈ ℂ)
145129a1i 11 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -(π / 2) ∈ ℂ)
146141, 142, 144, 145addsub4d 10318 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) + (π / 2)) − ((ℑ‘(log‘(𝐴 + i))) + -(π / 2))) = (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + ((π / 2) − -(π / 2))))
14760, 60subnegi 10239 . . . . . 6 ((π / 2) − -(π / 2)) = ((π / 2) + (π / 2))
148147, 131eqtri 2632 . . . . 5 ((π / 2) − -(π / 2)) = π
149148oveq2i 6560 . . . 4 (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + ((π / 2) − -(π / 2))) = (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π)
150146, 149syl6eq 2660 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) + (π / 2)) − ((ℑ‘(log‘(𝐴 + i))) + -(π / 2))) = (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π))
15117, 139, 1503eqtrd 2648 . 2 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π))
152140, 143resubcld 10337 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) ∈ ℝ)
153 readdcl 9898 . . . 4 ((((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) ∈ ℝ ∧ π ∈ ℝ) → (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ ℝ)
154152, 124, 153sylancl 693 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ ℝ)
155124renegcli 10221 . . . . . . 7 -π ∈ ℝ
156155recni 9931 . . . . . 6 -π ∈ ℂ
157156, 110negsubi 10238 . . . . 5 (-π + -π) = (-π − π)
158155a1i 11 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π ∈ ℝ)
159143renegcld 10336 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -(ℑ‘(log‘(𝐴 + i))) ∈ ℝ)
16030, 47logimcld 24122 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (-π < (ℑ‘(log‘(𝐴 − i))) ∧ (ℑ‘(log‘(𝐴 − i))) ≤ π))
161160simpld 474 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π < (ℑ‘(log‘(𝐴 − i))))
16273, 103logimcld 24122 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (-π < (ℑ‘(log‘(𝐴 + i))) ∧ (ℑ‘(log‘(𝐴 + i))) ≤ π))
163162simprd 478 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 + i))) ≤ π)
164 leneg 10410 . . . . . . . . 9 (((ℑ‘(log‘(𝐴 + i))) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘(log‘(𝐴 + i))) ≤ π ↔ -π ≤ -(ℑ‘(log‘(𝐴 + i)))))
165143, 124, 164sylancl 693 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(𝐴 + i))) ≤ π ↔ -π ≤ -(ℑ‘(log‘(𝐴 + i)))))
166163, 165mpbid 221 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π ≤ -(ℑ‘(log‘(𝐴 + i))))
167158, 158, 140, 159, 161, 166ltleaddd 10527 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (-π + -π) < ((ℑ‘(log‘(𝐴 − i))) + -(ℑ‘(log‘(𝐴 + i)))))
168141, 144negsubd 10277 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(𝐴 − i))) + -(ℑ‘(log‘(𝐴 + i)))) = ((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))))
169167, 168breqtrd 4609 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (-π + -π) < ((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))))
170157, 169syl5eqbrr 4619 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (-π − π) < ((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))))
171124a1i 11 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → π ∈ ℝ)
172158, 171, 152ltsubaddd 10502 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((-π − π) < ((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) ↔ -π < (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π)))
173170, 172mpbid 221 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π < (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π))
174 0red 9920 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 ∈ ℝ)
1756imcld 13783 . . . . . . . . . . . . 13 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘𝐴) ∈ ℝ)
176 peano2rem 10227 . . . . . . . . . . . . 13 ((ℑ‘𝐴) ∈ ℝ → ((ℑ‘𝐴) − 1) ∈ ℝ)
177175, 176syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘𝐴) − 1) ∈ ℝ)
178 peano2re 10088 . . . . . . . . . . . . 13 ((ℑ‘𝐴) ∈ ℝ → ((ℑ‘𝐴) + 1) ∈ ℝ)
179175, 178syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘𝐴) + 1) ∈ ℝ)
180175ltm1d 10835 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘𝐴) − 1) < (ℑ‘𝐴))
181175ltp1d 10833 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘𝐴) < ((ℑ‘𝐴) + 1))
182177, 175, 179, 180, 181lttrd 10077 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘𝐴) − 1) < ((ℑ‘𝐴) + 1))
183 ltdiv1 10766 . . . . . . . . . . . 12 ((((ℑ‘𝐴) − 1) ∈ ℝ ∧ ((ℑ‘𝐴) + 1) ∈ ℝ ∧ ((ℜ‘𝐴) ∈ ℝ ∧ 0 < (ℜ‘𝐴))) → (((ℑ‘𝐴) − 1) < ((ℑ‘𝐴) + 1) ↔ (((ℑ‘𝐴) − 1) / (ℜ‘𝐴)) < (((ℑ‘𝐴) + 1) / (ℜ‘𝐴))))
184177, 179, 35, 48, 183syl112anc 1322 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘𝐴) − 1) < ((ℑ‘𝐴) + 1) ↔ (((ℑ‘𝐴) − 1) / (ℜ‘𝐴)) < (((ℑ‘𝐴) + 1) / (ℜ‘𝐴))))
185182, 184mpbid 221 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘𝐴) − 1) / (ℜ‘𝐴)) < (((ℑ‘𝐴) + 1) / (ℜ‘𝐴)))
186 imsub 13723 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (ℑ‘(𝐴 − i)) = ((ℑ‘𝐴) − (ℑ‘i)))
1876, 2, 186sylancl 693 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(𝐴 − i)) = ((ℑ‘𝐴) − (ℑ‘i)))
188 imi 13745 . . . . . . . . . . . . 13 (ℑ‘i) = 1
189188oveq2i 6560 . . . . . . . . . . . 12 ((ℑ‘𝐴) − (ℑ‘i)) = ((ℑ‘𝐴) − 1)
190187, 189syl6eq 2660 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(𝐴 − i)) = ((ℑ‘𝐴) − 1))
191190, 39oveq12d 6567 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(𝐴 − i)) / (ℜ‘(𝐴 − i))) = (((ℑ‘𝐴) − 1) / (ℜ‘𝐴)))
192 imadd 13722 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (ℑ‘(𝐴 + i)) = ((ℑ‘𝐴) + (ℑ‘i)))
1936, 2, 192sylancl 693 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(𝐴 + i)) = ((ℑ‘𝐴) + (ℑ‘i)))
194188oveq2i 6560 . . . . . . . . . . . 12 ((ℑ‘𝐴) + (ℑ‘i)) = ((ℑ‘𝐴) + 1)
195193, 194syl6eq 2660 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(𝐴 + i)) = ((ℑ‘𝐴) + 1))
196195, 83oveq12d 6567 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(𝐴 + i)) / (ℜ‘(𝐴 + i))) = (((ℑ‘𝐴) + 1) / (ℜ‘𝐴)))
197185, 191, 1963brtr4d 4615 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(𝐴 − i)) / (ℜ‘(𝐴 − i))) < ((ℑ‘(𝐴 + i)) / (ℜ‘(𝐴 + i))))
198 tanarg 24169 . . . . . . . . . 10 (((𝐴 − i) ∈ ℂ ∧ (ℜ‘(𝐴 − i)) ≠ 0) → (tan‘(ℑ‘(log‘(𝐴 − i)))) = ((ℑ‘(𝐴 − i)) / (ℜ‘(𝐴 − i))))
19930, 42, 198syl2anc 691 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (tan‘(ℑ‘(log‘(𝐴 − i)))) = ((ℑ‘(𝐴 − i)) / (ℜ‘(𝐴 − i))))
200 tanarg 24169 . . . . . . . . . 10 (((𝐴 + i) ∈ ℂ ∧ (ℜ‘(𝐴 + i)) ≠ 0) → (tan‘(ℑ‘(log‘(𝐴 + i)))) = ((ℑ‘(𝐴 + i)) / (ℜ‘(𝐴 + i))))
20173, 99, 200syl2anc 691 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (tan‘(ℑ‘(log‘(𝐴 + i)))) = ((ℑ‘(𝐴 + i)) / (ℜ‘(𝐴 + i))))
202197, 199, 2013brtr4d 4615 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (tan‘(ℑ‘(log‘(𝐴 − i)))) < (tan‘(ℑ‘(log‘(𝐴 + i)))))
20348, 39breqtrrd 4611 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘(𝐴 − i)))
204 argregt0 24160 . . . . . . . . . 10 (((𝐴 − i) ∈ ℂ ∧ 0 < (ℜ‘(𝐴 − i))) → (ℑ‘(log‘(𝐴 − i))) ∈ (-(π / 2)(,)(π / 2)))
20530, 203, 204syl2anc 691 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 − i))) ∈ (-(π / 2)(,)(π / 2)))
20648, 83breqtrrd 4611 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘(𝐴 + i)))
207 argregt0 24160 . . . . . . . . . 10 (((𝐴 + i) ∈ ℂ ∧ 0 < (ℜ‘(𝐴 + i))) → (ℑ‘(log‘(𝐴 + i))) ∈ (-(π / 2)(,)(π / 2)))
20873, 206, 207syl2anc 691 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 + i))) ∈ (-(π / 2)(,)(π / 2)))
209 tanord 24088 . . . . . . . . 9 (((ℑ‘(log‘(𝐴 − i))) ∈ (-(π / 2)(,)(π / 2)) ∧ (ℑ‘(log‘(𝐴 + i))) ∈ (-(π / 2)(,)(π / 2))) → ((ℑ‘(log‘(𝐴 − i))) < (ℑ‘(log‘(𝐴 + i))) ↔ (tan‘(ℑ‘(log‘(𝐴 − i)))) < (tan‘(ℑ‘(log‘(𝐴 + i))))))
210205, 208, 209syl2anc 691 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(𝐴 − i))) < (ℑ‘(log‘(𝐴 + i))) ↔ (tan‘(ℑ‘(log‘(𝐴 − i)))) < (tan‘(ℑ‘(log‘(𝐴 + i))))))
211202, 210mpbird 246 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 − i))) < (ℑ‘(log‘(𝐴 + i))))
212144addid2d 10116 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (0 + (ℑ‘(log‘(𝐴 + i)))) = (ℑ‘(log‘(𝐴 + i))))
213211, 212breqtrrd 4611 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 − i))) < (0 + (ℑ‘(log‘(𝐴 + i)))))
214140, 143, 174ltsubaddd 10502 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) < 0 ↔ (ℑ‘(log‘(𝐴 − i))) < (0 + (ℑ‘(log‘(𝐴 + i))))))
215213, 214mpbird 246 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) < 0)
216152, 174, 171, 215ltadd1dd 10517 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) < (0 + π))
217110addid2i 10103 . . . 4 (0 + π) = π
218216, 217syl6breq 4624 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) < π)
219155rexri 9976 . . . 4 -π ∈ ℝ*
220124rexri 9976 . . . 4 π ∈ ℝ*
221 elioo2 12087 . . . 4 ((-π ∈ ℝ* ∧ π ∈ ℝ*) → ((((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ (-π(,)π) ↔ ((((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ ℝ ∧ -π < (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∧ (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) < π)))
222219, 220, 221mp2an 704 . . 3 ((((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ (-π(,)π) ↔ ((((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ ℝ ∧ -π < (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∧ (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) < π))
223154, 173, 218, 222syl3anbrc 1239 . 2 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ (-π(,)π))
224151, 223eqeltrd 2688 1 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  dom cdm 5038  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816  ici 9817   + caddc 9818   · cmul 9820  *cxr 9952   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  2c2 10947  (,)cioo 12046  cre 13685  cim 13686  tanctan 14635  πcpi 14636  logclog 24105  arctancatan 24391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-tan 14641  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-atan 24394
This theorem is referenced by:  atanlogsub  24443  atanbndlem  24452
  Copyright terms: Public domain W3C validator