Proof of Theorem argregt0
Step | Hyp | Ref
| Expression |
1 | | recl 13698 |
. . . . . 6
⊢ (𝐴 ∈ ℂ →
(ℜ‘𝐴) ∈
ℝ) |
2 | | gt0ne0 10372 |
. . . . . 6
⊢
(((ℜ‘𝐴)
∈ ℝ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ≠ 0) |
3 | 1, 2 | sylan 487 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(ℜ‘𝐴) ≠
0) |
4 | | fveq2 6103 |
. . . . . . 7
⊢ (𝐴 = 0 → (ℜ‘𝐴) =
(ℜ‘0)) |
5 | | re0 13740 |
. . . . . . 7
⊢
(ℜ‘0) = 0 |
6 | 4, 5 | syl6eq 2660 |
. . . . . 6
⊢ (𝐴 = 0 → (ℜ‘𝐴) = 0) |
7 | 6 | necon3i 2814 |
. . . . 5
⊢
((ℜ‘𝐴)
≠ 0 → 𝐴 ≠
0) |
8 | 3, 7 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
𝐴 ≠ 0) |
9 | | logcl 24119 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈
ℂ) |
10 | 8, 9 | syldan 486 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(log‘𝐴) ∈
ℂ) |
11 | 10 | imcld 13783 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(ℑ‘(log‘𝐴)) ∈ ℝ) |
12 | | coshalfpi 24025 |
. . . . . 6
⊢
(cos‘(π / 2)) = 0 |
13 | | simpr 476 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) → 0
< (ℜ‘𝐴)) |
14 | | abscl 13866 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℂ →
(abs‘𝐴) ∈
ℝ) |
15 | 14 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(abs‘𝐴) ∈
ℝ) |
16 | 15 | recnd 9947 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(abs‘𝐴) ∈
ℂ) |
17 | 16 | mul01d 10114 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
((abs‘𝐴) · 0)
= 0) |
18 | | simpl 472 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
𝐴 ∈
ℂ) |
19 | | absrpcl 13876 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈
ℝ+) |
20 | 8, 19 | syldan 486 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(abs‘𝐴) ∈
ℝ+) |
21 | 20 | rpne0d 11753 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(abs‘𝐴) ≠
0) |
22 | 18, 16, 21 | divcld 10680 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(𝐴 / (abs‘𝐴)) ∈
ℂ) |
23 | 15, 22 | remul2d 13815 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(ℜ‘((abs‘𝐴) · (𝐴 / (abs‘𝐴)))) = ((abs‘𝐴) · (ℜ‘(𝐴 / (abs‘𝐴))))) |
24 | 18, 16, 21 | divcan2d 10682 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
((abs‘𝐴) ·
(𝐴 / (abs‘𝐴))) = 𝐴) |
25 | 24 | fveq2d 6107 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(ℜ‘((abs‘𝐴) · (𝐴 / (abs‘𝐴)))) = (ℜ‘𝐴)) |
26 | 23, 25 | eqtr3d 2646 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
((abs‘𝐴) ·
(ℜ‘(𝐴 /
(abs‘𝐴)))) =
(ℜ‘𝐴)) |
27 | 13, 17, 26 | 3brtr4d 4615 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
((abs‘𝐴) · 0)
< ((abs‘𝐴)
· (ℜ‘(𝐴 /
(abs‘𝐴))))) |
28 | | 0re 9919 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℝ |
29 | 28 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) → 0
∈ ℝ) |
30 | 22 | recld 13782 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(ℜ‘(𝐴 /
(abs‘𝐴))) ∈
ℝ) |
31 | 29, 30, 20 | ltmul2d 11790 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) → (0
< (ℜ‘(𝐴 /
(abs‘𝐴))) ↔
((abs‘𝐴) · 0)
< ((abs‘𝐴)
· (ℜ‘(𝐴 /
(abs‘𝐴)))))) |
32 | 27, 31 | mpbird 246 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) → 0
< (ℜ‘(𝐴 /
(abs‘𝐴)))) |
33 | | efiarg 24157 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(i
· (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴))) |
34 | 8, 33 | syldan 486 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴))) |
35 | 34 | fveq2d 6107 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(ℜ‘(exp‘(i · (ℑ‘(log‘𝐴))))) = (ℜ‘(𝐴 / (abs‘𝐴)))) |
36 | 32, 35 | breqtrrd 4611 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) → 0
< (ℜ‘(exp‘(i · (ℑ‘(log‘𝐴)))))) |
37 | | recosval 14705 |
. . . . . . . . 9
⊢
((ℑ‘(log‘𝐴)) ∈ ℝ →
(cos‘(ℑ‘(log‘𝐴))) = (ℜ‘(exp‘(i ·
(ℑ‘(log‘𝐴)))))) |
38 | 11, 37 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(cos‘(ℑ‘(log‘𝐴))) = (ℜ‘(exp‘(i ·
(ℑ‘(log‘𝐴)))))) |
39 | 36, 38 | breqtrrd 4611 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) → 0
< (cos‘(ℑ‘(log‘𝐴)))) |
40 | | fveq2 6103 |
. . . . . . . . 9
⊢
((abs‘(ℑ‘(log‘𝐴))) = (ℑ‘(log‘𝐴)) →
(cos‘(abs‘(ℑ‘(log‘𝐴)))) =
(cos‘(ℑ‘(log‘𝐴)))) |
41 | 40 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
((abs‘(ℑ‘(log‘𝐴))) = (ℑ‘(log‘𝐴)) →
(cos‘(abs‘(ℑ‘(log‘𝐴)))) =
(cos‘(ℑ‘(log‘𝐴))))) |
42 | 11 | recnd 9947 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(ℑ‘(log‘𝐴)) ∈ ℂ) |
43 | | cosneg 14716 |
. . . . . . . . . 10
⊢
((ℑ‘(log‘𝐴)) ∈ ℂ →
(cos‘-(ℑ‘(log‘𝐴))) =
(cos‘(ℑ‘(log‘𝐴)))) |
44 | 42, 43 | syl 17 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(cos‘-(ℑ‘(log‘𝐴))) =
(cos‘(ℑ‘(log‘𝐴)))) |
45 | | fveq2 6103 |
. . . . . . . . . 10
⊢
((abs‘(ℑ‘(log‘𝐴))) = -(ℑ‘(log‘𝐴)) →
(cos‘(abs‘(ℑ‘(log‘𝐴)))) =
(cos‘-(ℑ‘(log‘𝐴)))) |
46 | 45 | eqeq1d 2612 |
. . . . . . . . 9
⊢
((abs‘(ℑ‘(log‘𝐴))) = -(ℑ‘(log‘𝐴)) →
((cos‘(abs‘(ℑ‘(log‘𝐴)))) =
(cos‘(ℑ‘(log‘𝐴))) ↔
(cos‘-(ℑ‘(log‘𝐴))) =
(cos‘(ℑ‘(log‘𝐴))))) |
47 | 44, 46 | syl5ibrcom 236 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
((abs‘(ℑ‘(log‘𝐴))) = -(ℑ‘(log‘𝐴)) →
(cos‘(abs‘(ℑ‘(log‘𝐴)))) =
(cos‘(ℑ‘(log‘𝐴))))) |
48 | 11 | absord 14002 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
((abs‘(ℑ‘(log‘𝐴))) = (ℑ‘(log‘𝐴)) ∨
(abs‘(ℑ‘(log‘𝐴))) = -(ℑ‘(log‘𝐴)))) |
49 | 41, 47, 48 | mpjaod 395 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(cos‘(abs‘(ℑ‘(log‘𝐴)))) =
(cos‘(ℑ‘(log‘𝐴)))) |
50 | 39, 49 | breqtrrd 4611 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) → 0
< (cos‘(abs‘(ℑ‘(log‘𝐴))))) |
51 | 12, 50 | syl5eqbr 4618 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(cos‘(π / 2)) <
(cos‘(abs‘(ℑ‘(log‘𝐴))))) |
52 | | abscl 13866 |
. . . . . . . 8
⊢
((ℑ‘(log‘𝐴)) ∈ ℂ →
(abs‘(ℑ‘(log‘𝐴))) ∈ ℝ) |
53 | 42, 52 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(abs‘(ℑ‘(log‘𝐴))) ∈ ℝ) |
54 | 42 | absge0d 14031 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) → 0
≤ (abs‘(ℑ‘(log‘𝐴)))) |
55 | | logimcl 24120 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π <
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)) |
56 | 8, 55 | syldan 486 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)) |
57 | 56 | simpld 474 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
-π < (ℑ‘(log‘𝐴))) |
58 | | pire 24014 |
. . . . . . . . . . 11
⊢ π
∈ ℝ |
59 | 58 | renegcli 10221 |
. . . . . . . . . 10
⊢ -π
∈ ℝ |
60 | | ltle 10005 |
. . . . . . . . . 10
⊢ ((-π
∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π <
(ℑ‘(log‘𝐴)) → -π ≤
(ℑ‘(log‘𝐴)))) |
61 | 59, 11, 60 | sylancr 694 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(-π < (ℑ‘(log‘𝐴)) → -π ≤
(ℑ‘(log‘𝐴)))) |
62 | 57, 61 | mpd 15 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
-π ≤ (ℑ‘(log‘𝐴))) |
63 | 56 | simprd 478 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(ℑ‘(log‘𝐴)) ≤ π) |
64 | | absle 13903 |
. . . . . . . . 9
⊢
(((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ)
→ ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))) |
65 | 11, 58, 64 | sylancl 693 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))) |
66 | 62, 63, 65 | mpbir2and 959 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(abs‘(ℑ‘(log‘𝐴))) ≤ π) |
67 | 28, 58 | elicc2i 12110 |
. . . . . . 7
⊢
((abs‘(ℑ‘(log‘𝐴))) ∈ (0[,]π) ↔
((abs‘(ℑ‘(log‘𝐴))) ∈ ℝ ∧ 0 ≤
(abs‘(ℑ‘(log‘𝐴))) ∧
(abs‘(ℑ‘(log‘𝐴))) ≤ π)) |
68 | 53, 54, 66, 67 | syl3anbrc 1239 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(abs‘(ℑ‘(log‘𝐴))) ∈ (0[,]π)) |
69 | | halfpire 24020 |
. . . . . . 7
⊢ (π /
2) ∈ ℝ |
70 | | pirp 24017 |
. . . . . . . 8
⊢ π
∈ ℝ+ |
71 | | rphalfcl 11734 |
. . . . . . . 8
⊢ (π
∈ ℝ+ → (π / 2) ∈
ℝ+) |
72 | | rpge0 11721 |
. . . . . . . 8
⊢ ((π /
2) ∈ ℝ+ → 0 ≤ (π / 2)) |
73 | 70, 71, 72 | mp2b 10 |
. . . . . . 7
⊢ 0 ≤
(π / 2) |
74 | | rphalflt 11736 |
. . . . . . . . 9
⊢ (π
∈ ℝ+ → (π / 2) < π) |
75 | 70, 74 | ax-mp 5 |
. . . . . . . 8
⊢ (π /
2) < π |
76 | 69, 58, 75 | ltleii 10039 |
. . . . . . 7
⊢ (π /
2) ≤ π |
77 | 28, 58 | elicc2i 12110 |
. . . . . . 7
⊢ ((π /
2) ∈ (0[,]π) ↔ ((π / 2) ∈ ℝ ∧ 0 ≤ (π / 2)
∧ (π / 2) ≤ π)) |
78 | 69, 73, 76, 77 | mpbir3an 1237 |
. . . . . 6
⊢ (π /
2) ∈ (0[,]π) |
79 | | cosord 24082 |
. . . . . 6
⊢
(((abs‘(ℑ‘(log‘𝐴))) ∈ (0[,]π) ∧ (π / 2)
∈ (0[,]π)) → ((abs‘(ℑ‘(log‘𝐴))) < (π / 2) ↔
(cos‘(π / 2)) <
(cos‘(abs‘(ℑ‘(log‘𝐴)))))) |
80 | 68, 78, 79 | sylancl 693 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
((abs‘(ℑ‘(log‘𝐴))) < (π / 2) ↔ (cos‘(π
/ 2)) < (cos‘(abs‘(ℑ‘(log‘𝐴)))))) |
81 | 51, 80 | mpbird 246 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(abs‘(ℑ‘(log‘𝐴))) < (π / 2)) |
82 | | abslt 13902 |
. . . . 5
⊢
(((ℑ‘(log‘𝐴)) ∈ ℝ ∧ (π / 2) ∈
ℝ) → ((abs‘(ℑ‘(log‘𝐴))) < (π / 2) ↔ (-(π / 2) <
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π /
2)))) |
83 | 11, 69, 82 | sylancl 693 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
((abs‘(ℑ‘(log‘𝐴))) < (π / 2) ↔ (-(π / 2) <
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π /
2)))) |
84 | 81, 83 | mpbid 221 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(-(π / 2) < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π /
2))) |
85 | 84 | simpld 474 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
-(π / 2) < (ℑ‘(log‘𝐴))) |
86 | 84 | simprd 478 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(ℑ‘(log‘𝐴)) < (π / 2)) |
87 | 69 | renegcli 10221 |
. . . 4
⊢ -(π /
2) ∈ ℝ |
88 | 87 | rexri 9976 |
. . 3
⊢ -(π /
2) ∈ ℝ* |
89 | 69 | rexri 9976 |
. . 3
⊢ (π /
2) ∈ ℝ* |
90 | | elioo2 12087 |
. . 3
⊢ ((-(π
/ 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*)
→ ((ℑ‘(log‘𝐴)) ∈ (-(π / 2)(,)(π / 2)) ↔
((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -(π / 2) <
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π /
2)))) |
91 | 88, 89, 90 | mp2an 704 |
. 2
⊢
((ℑ‘(log‘𝐴)) ∈ (-(π / 2)(,)(π / 2)) ↔
((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -(π / 2) <
(ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π /
2))) |
92 | 11, 85, 86, 91 | syl3anbrc 1239 |
1
⊢ ((𝐴 ∈ ℂ ∧ 0 <
(ℜ‘𝐴)) →
(ℑ‘(log‘𝐴)) ∈ (-(π / 2)(,)(π /
2))) |