MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  argregt0 Structured version   Unicode version

Theorem argregt0 22861
Description: Closure of the argument of a complex number with positive real part. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
argregt0  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( Im `  ( log `  A ) )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )

Proof of Theorem argregt0
StepHypRef Expression
1 recl 12923 . . . . . 6  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
2 gt0ne0 10029 . . . . . 6  |-  ( ( ( Re `  A
)  e.  RR  /\  0  <  ( Re `  A ) )  -> 
( Re `  A
)  =/=  0 )
31, 2sylan 471 . . . . 5  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( Re `  A
)  =/=  0 )
4 fveq2 5872 . . . . . . 7  |-  ( A  =  0  ->  (
Re `  A )  =  ( Re ` 
0 ) )
5 re0 12965 . . . . . . 7  |-  ( Re
`  0 )  =  0
64, 5syl6eq 2524 . . . . . 6  |-  ( A  =  0  ->  (
Re `  A )  =  0 )
76necon3i 2707 . . . . 5  |-  ( ( Re `  A )  =/=  0  ->  A  =/=  0 )
83, 7syl 16 . . . 4  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  ->  A  =/=  0 )
9 logcl 22822 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( log `  A
)  e.  CC )
108, 9syldan 470 . . 3  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( log `  A
)  e.  CC )
1110imcld 13008 . 2  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( Im `  ( log `  A ) )  e.  RR )
12 coshalfpi 22728 . . . . . 6  |-  ( cos `  ( pi  /  2
) )  =  0
13 simpr 461 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
0  <  ( Re `  A ) )
14 abscl 13091 . . . . . . . . . . . . . 14  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
1514adantr 465 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( abs `  A
)  e.  RR )
1615recnd 9634 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( abs `  A
)  e.  CC )
1716mul01d 9790 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( ( abs `  A
)  x.  0 )  =  0 )
18 simpl 457 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  ->  A  e.  CC )
19 absrpcl 13101 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  e.  RR+ )
208, 19syldan 470 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( abs `  A
)  e.  RR+ )
2120rpne0d 11273 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( abs `  A
)  =/=  0 )
2218, 16, 21divcld 10332 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( A  /  ( abs `  A ) )  e.  CC )
2315, 22remul2d 13040 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( Re `  (
( abs `  A
)  x.  ( A  /  ( abs `  A
) ) ) )  =  ( ( abs `  A )  x.  (
Re `  ( A  /  ( abs `  A
) ) ) ) )
2418, 16, 21divcan2d 10334 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( ( abs `  A
)  x.  ( A  /  ( abs `  A
) ) )  =  A )
2524fveq2d 5876 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( Re `  (
( abs `  A
)  x.  ( A  /  ( abs `  A
) ) ) )  =  ( Re `  A ) )
2623, 25eqtr3d 2510 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( ( abs `  A
)  x.  ( Re
`  ( A  / 
( abs `  A
) ) ) )  =  ( Re `  A ) )
2713, 17, 263brtr4d 4483 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( ( abs `  A
)  x.  0 )  <  ( ( abs `  A )  x.  (
Re `  ( A  /  ( abs `  A
) ) ) ) )
28 0re 9608 . . . . . . . . . . . 12  |-  0  e.  RR
2928a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
0  e.  RR )
3022recld 13007 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( Re `  ( A  /  ( abs `  A
) ) )  e.  RR )
3129, 30, 20ltmul2d 11306 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( 0  <  (
Re `  ( A  /  ( abs `  A
) ) )  <->  ( ( abs `  A )  x.  0 )  <  (
( abs `  A
)  x.  ( Re
`  ( A  / 
( abs `  A
) ) ) ) ) )
3227, 31mpbird 232 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
0  <  ( Re `  ( A  /  ( abs `  A ) ) ) )
33 efiarg 22858 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( exp `  (
_i  x.  ( Im `  ( log `  A
) ) ) )  =  ( A  / 
( abs `  A
) ) )
348, 33syldan 470 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( exp `  (
_i  x.  ( Im `  ( log `  A
) ) ) )  =  ( A  / 
( abs `  A
) ) )
3534fveq2d 5876 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( Re `  ( exp `  ( _i  x.  ( Im `  ( log `  A ) ) ) ) )  =  ( Re `  ( A  /  ( abs `  A
) ) ) )
3632, 35breqtrrd 4479 . . . . . . . 8  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
0  <  ( Re `  ( exp `  (
_i  x.  ( Im `  ( log `  A
) ) ) ) ) )
37 recosval 13749 . . . . . . . . 9  |-  ( ( Im `  ( log `  A ) )  e.  RR  ->  ( cos `  ( Im `  ( log `  A ) ) )  =  ( Re
`  ( exp `  (
_i  x.  ( Im `  ( log `  A
) ) ) ) ) )
3811, 37syl 16 . . . . . . . 8  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( cos `  (
Im `  ( log `  A ) ) )  =  ( Re `  ( exp `  ( _i  x.  ( Im `  ( log `  A ) ) ) ) ) )
3936, 38breqtrrd 4479 . . . . . . 7  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
0  <  ( cos `  ( Im `  ( log `  A ) ) ) )
40 fveq2 5872 . . . . . . . . 9  |-  ( ( abs `  ( Im
`  ( log `  A
) ) )  =  ( Im `  ( log `  A ) )  ->  ( cos `  ( abs `  ( Im `  ( log `  A ) ) ) )  =  ( cos `  (
Im `  ( log `  A ) ) ) )
4140a1i 11 . . . . . . . 8  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( ( abs `  (
Im `  ( log `  A ) ) )  =  ( Im `  ( log `  A ) )  ->  ( cos `  ( abs `  (
Im `  ( log `  A ) ) ) )  =  ( cos `  ( Im `  ( log `  A ) ) ) ) )
4211recnd 9634 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( Im `  ( log `  A ) )  e.  CC )
43 cosneg 13760 . . . . . . . . . 10  |-  ( ( Im `  ( log `  A ) )  e.  CC  ->  ( cos `  -u ( Im `  ( log `  A ) ) )  =  ( cos `  ( Im `  ( log `  A ) ) ) )
4442, 43syl 16 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( cos `  -u (
Im `  ( log `  A ) ) )  =  ( cos `  (
Im `  ( log `  A ) ) ) )
45 fveq2 5872 . . . . . . . . . 10  |-  ( ( abs `  ( Im
`  ( log `  A
) ) )  = 
-u ( Im `  ( log `  A ) )  ->  ( cos `  ( abs `  (
Im `  ( log `  A ) ) ) )  =  ( cos `  -u ( Im `  ( log `  A ) ) ) )
4645eqeq1d 2469 . . . . . . . . 9  |-  ( ( abs `  ( Im
`  ( log `  A
) ) )  = 
-u ( Im `  ( log `  A ) )  ->  ( ( cos `  ( abs `  (
Im `  ( log `  A ) ) ) )  =  ( cos `  ( Im `  ( log `  A ) ) )  <->  ( cos `  -u (
Im `  ( log `  A ) ) )  =  ( cos `  (
Im `  ( log `  A ) ) ) ) )
4744, 46syl5ibrcom 222 . . . . . . . 8  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( ( abs `  (
Im `  ( log `  A ) ) )  =  -u ( Im `  ( log `  A ) )  ->  ( cos `  ( abs `  (
Im `  ( log `  A ) ) ) )  =  ( cos `  ( Im `  ( log `  A ) ) ) ) )
4811absord 13227 . . . . . . . 8  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( ( abs `  (
Im `  ( log `  A ) ) )  =  ( Im `  ( log `  A ) )  \/  ( abs `  ( Im `  ( log `  A ) ) )  =  -u (
Im `  ( log `  A ) ) ) )
4941, 47, 48mpjaod 381 . . . . . . 7  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( cos `  ( abs `  ( Im `  ( log `  A ) ) ) )  =  ( cos `  (
Im `  ( log `  A ) ) ) )
5039, 49breqtrrd 4479 . . . . . 6  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
0  <  ( cos `  ( abs `  (
Im `  ( log `  A ) ) ) ) )
5112, 50syl5eqbr 4486 . . . . 5  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( cos `  (
pi  /  2 ) )  <  ( cos `  ( abs `  (
Im `  ( log `  A ) ) ) ) )
52 abscl 13091 . . . . . . . 8  |-  ( ( Im `  ( log `  A ) )  e.  CC  ->  ( abs `  ( Im `  ( log `  A ) ) )  e.  RR )
5342, 52syl 16 . . . . . . 7  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( abs `  (
Im `  ( log `  A ) ) )  e.  RR )
5442absge0d 13255 . . . . . . 7  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
0  <_  ( abs `  ( Im `  ( log `  A ) ) ) )
55 logimcl 22823 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( -u pi  <  (
Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi ) )
568, 55syldan 470 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( -u pi  <  (
Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi ) )
5756simpld 459 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  ->  -u pi  <  ( Im
`  ( log `  A
) ) )
58 pire 22718 . . . . . . . . . . 11  |-  pi  e.  RR
5958renegcli 9892 . . . . . . . . . 10  |-  -u pi  e.  RR
60 ltle 9685 . . . . . . . . . 10  |-  ( (
-u pi  e.  RR  /\  ( Im `  ( log `  A ) )  e.  RR )  -> 
( -u pi  <  (
Im `  ( log `  A ) )  ->  -u pi  <_  ( Im `  ( log `  A
) ) ) )
6159, 11, 60sylancr 663 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( -u pi  <  (
Im `  ( log `  A ) )  ->  -u pi  <_  ( Im `  ( log `  A
) ) ) )
6257, 61mpd 15 . . . . . . . 8  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  ->  -u pi  <_  ( Im `  ( log `  A
) ) )
6356simprd 463 . . . . . . . 8  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( Im `  ( log `  A ) )  <_  pi )
64 absle 13128 . . . . . . . . 9  |-  ( ( ( Im `  ( log `  A ) )  e.  RR  /\  pi  e.  RR )  ->  (
( abs `  (
Im `  ( log `  A ) ) )  <_  pi  <->  ( -u pi  <_  ( Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi )
) )
6511, 58, 64sylancl 662 . . . . . . . 8  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( ( abs `  (
Im `  ( log `  A ) ) )  <_  pi  <->  ( -u pi  <_  ( Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi )
) )
6662, 63, 65mpbir2and 920 . . . . . . 7  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( abs `  (
Im `  ( log `  A ) ) )  <_  pi )
6728, 58elicc2i 11602 . . . . . . 7  |-  ( ( abs `  ( Im
`  ( log `  A
) ) )  e.  ( 0 [,] pi ) 
<->  ( ( abs `  (
Im `  ( log `  A ) ) )  e.  RR  /\  0  <_  ( abs `  (
Im `  ( log `  A ) ) )  /\  ( abs `  (
Im `  ( log `  A ) ) )  <_  pi ) )
6853, 54, 66, 67syl3anbrc 1180 . . . . . 6  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( abs `  (
Im `  ( log `  A ) ) )  e.  ( 0 [,] pi ) )
69 halfpire 22723 . . . . . . 7  |-  ( pi 
/  2 )  e.  RR
70 pipos 22720 . . . . . . . . 9  |-  0  <  pi
7158, 70elrpii 11235 . . . . . . . 8  |-  pi  e.  RR+
72 rphalfcl 11256 . . . . . . . 8  |-  ( pi  e.  RR+  ->  ( pi 
/  2 )  e.  RR+ )
73 rpge0 11244 . . . . . . . 8  |-  ( ( pi  /  2 )  e.  RR+  ->  0  <_ 
( pi  /  2
) )
7471, 72, 73mp2b 10 . . . . . . 7  |-  0  <_  ( pi  /  2
)
75 rphalflt 11258 . . . . . . . . 9  |-  ( pi  e.  RR+  ->  ( pi 
/  2 )  < 
pi )
7671, 75ax-mp 5 . . . . . . . 8  |-  ( pi 
/  2 )  < 
pi
7769, 58, 76ltleii 9719 . . . . . . 7  |-  ( pi 
/  2 )  <_  pi
7828, 58elicc2i 11602 . . . . . . 7  |-  ( ( pi  /  2 )  e.  ( 0 [,] pi )  <->  ( (
pi  /  2 )  e.  RR  /\  0  <_  ( pi  /  2
)  /\  ( pi  /  2 )  <_  pi ) )
7969, 74, 77, 78mpbir3an 1178 . . . . . 6  |-  ( pi 
/  2 )  e.  ( 0 [,] pi )
80 cosord 22785 . . . . . 6  |-  ( ( ( abs `  (
Im `  ( log `  A ) ) )  e.  ( 0 [,] pi )  /\  (
pi  /  2 )  e.  ( 0 [,] pi ) )  -> 
( ( abs `  (
Im `  ( log `  A ) ) )  <  ( pi  / 
2 )  <->  ( cos `  ( pi  /  2
) )  <  ( cos `  ( abs `  (
Im `  ( log `  A ) ) ) ) ) )
8168, 79, 80sylancl 662 . . . . 5  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( ( abs `  (
Im `  ( log `  A ) ) )  <  ( pi  / 
2 )  <->  ( cos `  ( pi  /  2
) )  <  ( cos `  ( abs `  (
Im `  ( log `  A ) ) ) ) ) )
8251, 81mpbird 232 . . . 4  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( abs `  (
Im `  ( log `  A ) ) )  <  ( pi  / 
2 ) )
83 abslt 13127 . . . . 5  |-  ( ( ( Im `  ( log `  A ) )  e.  RR  /\  (
pi  /  2 )  e.  RR )  -> 
( ( abs `  (
Im `  ( log `  A ) ) )  <  ( pi  / 
2 )  <->  ( -u (
pi  /  2 )  <  ( Im `  ( log `  A ) )  /\  ( Im
`  ( log `  A
) )  <  (
pi  /  2 ) ) ) )
8411, 69, 83sylancl 662 . . . 4  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( ( abs `  (
Im `  ( log `  A ) ) )  <  ( pi  / 
2 )  <->  ( -u (
pi  /  2 )  <  ( Im `  ( log `  A ) )  /\  ( Im
`  ( log `  A
) )  <  (
pi  /  2 ) ) ) )
8582, 84mpbid 210 . . 3  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( -u ( pi  / 
2 )  <  (
Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  < 
( pi  /  2
) ) )
8685simpld 459 . 2  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  ->  -u ( pi  /  2
)  <  ( Im `  ( log `  A
) ) )
8785simprd 463 . 2  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( Im `  ( log `  A ) )  <  ( pi  / 
2 ) )
8869renegcli 9892 . . . 4  |-  -u (
pi  /  2 )  e.  RR
8988rexri 9658 . . 3  |-  -u (
pi  /  2 )  e.  RR*
9069rexri 9658 . . 3  |-  ( pi 
/  2 )  e. 
RR*
91 elioo2 11582 . . 3  |-  ( (
-u ( pi  / 
2 )  e.  RR*  /\  ( pi  /  2
)  e.  RR* )  ->  ( ( Im `  ( log `  A ) )  e.  ( -u ( pi  /  2
) (,) ( pi 
/  2 ) )  <-> 
( ( Im `  ( log `  A ) )  e.  RR  /\  -u ( pi  /  2
)  <  ( Im `  ( log `  A
) )  /\  (
Im `  ( log `  A ) )  < 
( pi  /  2
) ) ) )
9289, 90, 91mp2an 672 . 2  |-  ( ( Im `  ( log `  A ) )  e.  ( -u ( pi 
/  2 ) (,) ( pi  /  2
) )  <->  ( (
Im `  ( log `  A ) )  e.  RR  /\  -u (
pi  /  2 )  <  ( Im `  ( log `  A ) )  /\  ( Im
`  ( log `  A
) )  <  (
pi  /  2 ) ) )
9311, 86, 87, 92syl3anbrc 1180 1  |-  ( ( A  e.  CC  /\  0  <  ( Re `  A ) )  -> 
( Im `  ( log `  A ) )  e.  ( -u (
pi  /  2 ) (,) ( pi  / 
2 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4453   ` cfv 5594  (class class class)co 6295   CCcc 9502   RRcr 9503   0cc0 9504   _ici 9506    x. cmul 9509   RR*cxr 9639    < clt 9640    <_ cle 9641   -ucneg 9818    / cdiv 10218   2c2 10597   RR+crp 11232   (,)cioo 11541   [,]cicc 11544   Recre 12910   Imcim 12911   abscabs 13047   expce 13676   cosccos 13679   picpi 13681   logclog 22808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582  ax-addf 9583  ax-mulf 9584
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-of 6535  df-om 6696  df-1st 6795  df-2nd 6796  df-supp 6914  df-recs 7054  df-rdg 7088  df-1o 7142  df-2o 7143  df-oadd 7146  df-er 7323  df-map 7434  df-pm 7435  df-ixp 7482  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-fsupp 7842  df-fi 7883  df-sup 7913  df-oi 7947  df-card 8332  df-cda 8560  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-5 10609  df-6 10610  df-7 10611  df-8 10612  df-9 10613  df-10 10614  df-n0 10808  df-z 10877  df-dec 10989  df-uz 11095  df-q 11195  df-rp 11233  df-xneg 11330  df-xadd 11331  df-xmul 11332  df-ioo 11545  df-ioc 11546  df-ico 11547  df-icc 11548  df-fz 11685  df-fzo 11805  df-fl 11909  df-mod 11977  df-seq 12088  df-exp 12147  df-fac 12334  df-bc 12361  df-hash 12386  df-shft 12880  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-limsup 13274  df-clim 13291  df-rlim 13292  df-sum 13489  df-ef 13682  df-sin 13684  df-cos 13685  df-pi 13687  df-struct 14509  df-ndx 14510  df-slot 14511  df-base 14512  df-sets 14513  df-ress 14514  df-plusg 14585  df-mulr 14586  df-starv 14587  df-sca 14588  df-vsca 14589  df-ip 14590  df-tset 14591  df-ple 14592  df-ds 14594  df-unif 14595  df-hom 14596  df-cco 14597  df-rest 14695  df-topn 14696  df-0g 14714  df-gsum 14715  df-topgen 14716  df-pt 14717  df-prds 14720  df-xrs 14774  df-qtop 14779  df-imas 14780  df-xps 14782  df-mre 14858  df-mrc 14859  df-acs 14861  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-submnd 15840  df-mulg 15932  df-cntz 16227  df-cmn 16673  df-psmet 18281  df-xmet 18282  df-met 18283  df-bl 18284  df-mopn 18285  df-fbas 18286  df-fg 18287  df-cnfld 18291  df-top 19268  df-bases 19270  df-topon 19271  df-topsp 19272  df-cld 19388  df-ntr 19389  df-cls 19390  df-nei 19467  df-lp 19505  df-perf 19506  df-cn 19596  df-cnp 19597  df-haus 19684  df-tx 19931  df-hmeo 20124  df-fil 20215  df-fm 20307  df-flim 20308  df-flf 20309  df-xms 20691  df-ms 20692  df-tms 20693  df-cncf 21250  df-limc 22138  df-dv 22139  df-log 22810
This theorem is referenced by:  logcnlem4  22892  atanlogsublem  23112
  Copyright terms: Public domain W3C validator