MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atanlogsublem Structured version   Unicode version

Theorem atanlogsublem 23111
Description: Lemma for atanlogsub 23112. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
atanlogsublem  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( ( log `  ( 1  +  ( _i  x.  A
) ) )  -  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) )  e.  (
-u pi (,) pi ) )

Proof of Theorem atanlogsublem
StepHypRef Expression
1 ax-1cn 9548 . . . . . 6  |-  1  e.  CC
2 ax-icn 9549 . . . . . . 7  |-  _i  e.  CC
3 simpl 457 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  A  e.  dom arctan )
4 atandm2 23073 . . . . . . . . 9  |-  ( A  e.  dom arctan  <->  ( A  e.  CC  /\  ( 1  -  ( _i  x.  A ) )  =/=  0  /\  ( 1  +  ( _i  x.  A ) )  =/=  0 ) )
53, 4sylib 196 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( A  e.  CC  /\  (
1  -  ( _i  x.  A ) )  =/=  0  /\  (
1  +  ( _i  x.  A ) )  =/=  0 ) )
65simp1d 1007 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  A  e.  CC )
7 mulcl 9574 . . . . . . 7  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
82, 6, 7sylancr 663 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
_i  x.  A )  e.  CC )
9 addcl 9572 . . . . . 6  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 1  +  ( _i  x.  A
) )  e.  CC )
101, 8, 9sylancr 663 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
1  +  ( _i  x.  A ) )  e.  CC )
115simp3d 1009 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
1  +  ( _i  x.  A ) )  =/=  0 )
1210, 11logcld 22823 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( log `  ( 1  +  ( _i  x.  A
) ) )  e.  CC )
13 subcl 9819 . . . . . 6  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 1  -  ( _i  x.  A
) )  e.  CC )
141, 8, 13sylancr 663 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
1  -  ( _i  x.  A ) )  e.  CC )
155simp2d 1008 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
1  -  ( _i  x.  A ) )  =/=  0 )
1614, 15logcld 22823 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( log `  ( 1  -  ( _i  x.  A
) ) )  e.  CC )
1712, 16imsubd 13024 . . 3  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( ( log `  ( 1  +  ( _i  x.  A
) ) )  -  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) )  =  ( ( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  -  ( Im `  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) ) )
182a1i 11 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  _i  e.  CC )
1918, 6, 18subdid 10013 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
_i  x.  ( A  -  _i ) )  =  ( ( _i  x.  A )  -  (
_i  x.  _i )
) )
20 ixi 10179 . . . . . . . . . . 11  |-  ( _i  x.  _i )  = 
-u 1
2120oveq2i 6288 . . . . . . . . . 10  |-  ( ( _i  x.  A )  -  ( _i  x.  _i ) )  =  ( ( _i  x.  A
)  -  -u 1
)
22 subneg 9868 . . . . . . . . . . 11  |-  ( ( ( _i  x.  A
)  e.  CC  /\  1  e.  CC )  ->  ( ( _i  x.  A )  -  -u 1
)  =  ( ( _i  x.  A )  +  1 ) )
238, 1, 22sylancl 662 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( _i  x.  A
)  -  -u 1
)  =  ( ( _i  x.  A )  +  1 ) )
2421, 23syl5eq 2494 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( _i  x.  A
)  -  ( _i  x.  _i ) )  =  ( ( _i  x.  A )  +  1 ) )
25 addcom 9764 . . . . . . . . . 10  |-  ( ( ( _i  x.  A
)  e.  CC  /\  1  e.  CC )  ->  ( ( _i  x.  A )  +  1 )  =  ( 1  +  ( _i  x.  A ) ) )
268, 1, 25sylancl 662 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( _i  x.  A
)  +  1 )  =  ( 1  +  ( _i  x.  A
) ) )
2719, 24, 263eqtrd 2486 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
_i  x.  ( A  -  _i ) )  =  ( 1  +  ( _i  x.  A ) ) )
2827fveq2d 5856 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( log `  ( _i  x.  ( A  -  _i ) ) )  =  ( log `  (
1  +  ( _i  x.  A ) ) ) )
29 subcl 9819 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  _i  e.  CC )  -> 
( A  -  _i )  e.  CC )
306, 2, 29sylancl 662 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( A  -  _i )  e.  CC )
31 resub 12934 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  _i  e.  CC )  -> 
( Re `  ( A  -  _i )
)  =  ( ( Re `  A )  -  ( Re `  _i ) ) )
326, 2, 31sylancl 662 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Re `  ( A  -  _i ) )  =  ( ( Re `  A )  -  (
Re `  _i )
) )
33 rei 12963 . . . . . . . . . . . . 13  |-  ( Re
`  _i )  =  0
3433oveq2i 6288 . . . . . . . . . . . 12  |-  ( ( Re `  A )  -  ( Re `  _i ) )  =  ( ( Re `  A
)  -  0 )
356recld 13001 . . . . . . . . . . . . . 14  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Re `  A )  e.  RR )
3635recnd 9620 . . . . . . . . . . . . 13  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Re `  A )  e.  CC )
3736subid1d 9920 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Re `  A
)  -  0 )  =  ( Re `  A ) )
3834, 37syl5eq 2494 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Re `  A
)  -  ( Re
`  _i ) )  =  ( Re `  A ) )
3932, 38eqtrd 2482 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Re `  ( A  -  _i ) )  =  ( Re `  A
) )
40 gt0ne0 10018 . . . . . . . . . . 11  |-  ( ( ( Re `  A
)  e.  RR  /\  0  <  ( Re `  A ) )  -> 
( Re `  A
)  =/=  0 )
4135, 40sylancom 667 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Re `  A )  =/=  0 )
4239, 41eqnetrd 2734 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Re `  ( A  -  _i ) )  =/=  0 )
43 fveq2 5852 . . . . . . . . . . 11  |-  ( ( A  -  _i )  =  0  ->  (
Re `  ( A  -  _i ) )  =  ( Re `  0
) )
44 re0 12959 . . . . . . . . . . 11  |-  ( Re
`  0 )  =  0
4543, 44syl6eq 2498 . . . . . . . . . 10  |-  ( ( A  -  _i )  =  0  ->  (
Re `  ( A  -  _i ) )  =  0 )
4645necon3i 2681 . . . . . . . . 9  |-  ( ( Re `  ( A  -  _i ) )  =/=  0  ->  ( A  -  _i )  =/=  0 )
4742, 46syl 16 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( A  -  _i )  =/=  0 )
48 simpr 461 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  0  <  ( Re `  A
) )
49 0re 9594 . . . . . . . . . . 11  |-  0  e.  RR
50 ltle 9671 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  ( Re `  A )  e.  RR )  -> 
( 0  <  (
Re `  A )  ->  0  <_  ( Re `  A ) ) )
5149, 35, 50sylancr 663 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
0  <  ( Re `  A )  ->  0  <_  ( Re `  A
) ) )
5248, 51mpd 15 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  0  <_  ( Re `  A
) )
5352, 39breqtrrd 4459 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  0  <_  ( Re `  ( A  -  _i )
) )
54 logimul 22864 . . . . . . . 8  |-  ( ( ( A  -  _i )  e.  CC  /\  ( A  -  _i )  =/=  0  /\  0  <_  ( Re `  ( A  -  _i )
) )  ->  ( log `  ( _i  x.  ( A  -  _i ) ) )  =  ( ( log `  ( A  -  _i )
)  +  ( _i  x.  ( pi  / 
2 ) ) ) )
5530, 47, 53, 54syl3anc 1227 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( log `  ( _i  x.  ( A  -  _i ) ) )  =  ( ( log `  ( A  -  _i )
)  +  ( _i  x.  ( pi  / 
2 ) ) ) )
5628, 55eqtr3d 2484 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( log `  ( 1  +  ( _i  x.  A
) ) )  =  ( ( log `  ( A  -  _i )
)  +  ( _i  x.  ( pi  / 
2 ) ) ) )
5756fveq2d 5856 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  =  ( Im `  (
( log `  ( A  -  _i )
)  +  ( _i  x.  ( pi  / 
2 ) ) ) ) )
5830, 47logcld 22823 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( log `  ( A  -  _i ) )  e.  CC )
59 halfpire 22722 . . . . . . . . 9  |-  ( pi 
/  2 )  e.  RR
6059recni 9606 . . . . . . . 8  |-  ( pi 
/  2 )  e.  CC
612, 60mulcli 9599 . . . . . . 7  |-  ( _i  x.  ( pi  / 
2 ) )  e.  CC
62 imadd 12941 . . . . . . 7  |-  ( ( ( log `  ( A  -  _i )
)  e.  CC  /\  ( _i  x.  (
pi  /  2 ) )  e.  CC )  ->  ( Im `  ( ( log `  ( A  -  _i )
)  +  ( _i  x.  ( pi  / 
2 ) ) ) )  =  ( ( Im `  ( log `  ( A  -  _i ) ) )  +  ( Im `  (
_i  x.  ( pi  /  2 ) ) ) ) )
6358, 61, 62sylancl 662 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( ( log `  ( A  -  _i ) )  +  ( _i  x.  ( pi 
/  2 ) ) ) )  =  ( ( Im `  ( log `  ( A  -  _i ) ) )  +  ( Im `  (
_i  x.  ( pi  /  2 ) ) ) ) )
64 reim 12916 . . . . . . . . 9  |-  ( ( pi  /  2 )  e.  CC  ->  (
Re `  ( pi  /  2 ) )  =  ( Im `  (
_i  x.  ( pi  /  2 ) ) ) )
6560, 64ax-mp 5 . . . . . . . 8  |-  ( Re
`  ( pi  / 
2 ) )  =  ( Im `  (
_i  x.  ( pi  /  2 ) ) )
66 rere 12929 . . . . . . . . 9  |-  ( ( pi  /  2 )  e.  RR  ->  (
Re `  ( pi  /  2 ) )  =  ( pi  /  2
) )
6759, 66ax-mp 5 . . . . . . . 8  |-  ( Re
`  ( pi  / 
2 ) )  =  ( pi  /  2
)
6865, 67eqtr3i 2472 . . . . . . 7  |-  ( Im
`  ( _i  x.  ( pi  /  2
) ) )  =  ( pi  /  2
)
6968oveq2i 6288 . . . . . 6  |-  ( ( Im `  ( log `  ( A  -  _i ) ) )  +  ( Im `  (
_i  x.  ( pi  /  2 ) ) ) )  =  ( ( Im `  ( log `  ( A  -  _i ) ) )  +  ( pi  /  2
) )
7063, 69syl6eq 2498 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( ( log `  ( A  -  _i ) )  +  ( _i  x.  ( pi 
/  2 ) ) ) )  =  ( ( Im `  ( log `  ( A  -  _i ) ) )  +  ( pi  /  2
) ) )
7157, 70eqtrd 2482 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  =  ( ( Im `  ( log `  ( A  -  _i ) ) )  +  ( pi 
/  2 ) ) )
72 addcl 9572 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  _i  e.  CC )  -> 
( A  +  _i )  e.  CC )
736, 2, 72sylancl 662 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( A  +  _i )  e.  CC )
74 mulcl 9574 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  ( A  +  _i )  e.  CC )  ->  ( _i  x.  ( A  +  _i )
)  e.  CC )
752, 73, 74sylancr 663 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
_i  x.  ( A  +  _i ) )  e.  CC )
76 reim 12916 . . . . . . . . . . 11  |-  ( ( A  +  _i )  e.  CC  ->  (
Re `  ( A  +  _i ) )  =  ( Im `  (
_i  x.  ( A  +  _i ) ) ) )
7773, 76syl 16 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Re `  ( A  +  _i ) )  =  ( Im `  (
_i  x.  ( A  +  _i ) ) ) )
78 readd 12933 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  _i  e.  CC )  -> 
( Re `  ( A  +  _i )
)  =  ( ( Re `  A )  +  ( Re `  _i ) ) )
796, 2, 78sylancl 662 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Re `  ( A  +  _i ) )  =  ( ( Re `  A )  +  ( Re `  _i ) ) )
8033oveq2i 6288 . . . . . . . . . . . 12  |-  ( ( Re `  A )  +  ( Re `  _i ) )  =  ( ( Re `  A
)  +  0 )
8136addid1d 9778 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Re `  A
)  +  0 )  =  ( Re `  A ) )
8280, 81syl5eq 2494 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Re `  A
)  +  ( Re
`  _i ) )  =  ( Re `  A ) )
8379, 82eqtrd 2482 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Re `  ( A  +  _i ) )  =  ( Re `  A
) )
8477, 83eqtr3d 2484 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( _i  x.  ( A  +  _i ) ) )  =  ( Re `  A
) )
8548, 84breqtrrd 4459 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  0  <  ( Im `  (
_i  x.  ( A  +  _i ) ) ) )
86 logneg2 22865 . . . . . . . 8  |-  ( ( ( _i  x.  ( A  +  _i )
)  e.  CC  /\  0  <  ( Im `  ( _i  x.  ( A  +  _i )
) ) )  -> 
( log `  -u (
_i  x.  ( A  +  _i ) ) )  =  ( ( log `  ( _i  x.  ( A  +  _i )
) )  -  (
_i  x.  pi )
) )
8775, 85, 86syl2anc 661 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( log `  -u ( _i  x.  ( A  +  _i ) ) )  =  ( ( log `  (
_i  x.  ( A  +  _i ) ) )  -  ( _i  x.  pi ) ) )
8818, 6, 18adddid 9618 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
_i  x.  ( A  +  _i ) )  =  ( ( _i  x.  A )  +  ( _i  x.  _i ) ) )
8920oveq2i 6288 . . . . . . . . . . . 12  |-  ( ( _i  x.  A )  +  ( _i  x.  _i ) )  =  ( ( _i  x.  A
)  +  -u 1
)
90 negsub 9867 . . . . . . . . . . . . 13  |-  ( ( ( _i  x.  A
)  e.  CC  /\  1  e.  CC )  ->  ( ( _i  x.  A )  +  -u
1 )  =  ( ( _i  x.  A
)  -  1 ) )
918, 1, 90sylancl 662 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( _i  x.  A
)  +  -u 1
)  =  ( ( _i  x.  A )  -  1 ) )
9289, 91syl5eq 2494 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( _i  x.  A
)  +  ( _i  x.  _i ) )  =  ( ( _i  x.  A )  - 
1 ) )
9388, 92eqtrd 2482 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
_i  x.  ( A  +  _i ) )  =  ( ( _i  x.  A )  -  1 ) )
9493negeqd 9814 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u (
_i  x.  ( A  +  _i ) )  = 
-u ( ( _i  x.  A )  - 
1 ) )
95 negsubdi2 9878 . . . . . . . . . 10  |-  ( ( ( _i  x.  A
)  e.  CC  /\  1  e.  CC )  -> 
-u ( ( _i  x.  A )  - 
1 )  =  ( 1  -  ( _i  x.  A ) ) )
968, 1, 95sylancl 662 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u (
( _i  x.  A
)  -  1 )  =  ( 1  -  ( _i  x.  A
) ) )
9794, 96eqtrd 2482 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u (
_i  x.  ( A  +  _i ) )  =  ( 1  -  (
_i  x.  A )
) )
9897fveq2d 5856 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( log `  -u ( _i  x.  ( A  +  _i ) ) )  =  ( log `  (
1  -  ( _i  x.  A ) ) ) )
9983, 41eqnetrd 2734 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Re `  ( A  +  _i ) )  =/=  0 )
100 fveq2 5852 . . . . . . . . . . . . 13  |-  ( ( A  +  _i )  =  0  ->  (
Re `  ( A  +  _i ) )  =  ( Re `  0
) )
101100, 44syl6eq 2498 . . . . . . . . . . . 12  |-  ( ( A  +  _i )  =  0  ->  (
Re `  ( A  +  _i ) )  =  0 )
102101necon3i 2681 . . . . . . . . . . 11  |-  ( ( Re `  ( A  +  _i ) )  =/=  0  ->  ( A  +  _i )  =/=  0 )
10399, 102syl 16 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( A  +  _i )  =/=  0 )
10452, 83breqtrrd 4459 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  0  <_  ( Re `  ( A  +  _i )
) )
105 logimul 22864 . . . . . . . . . 10  |-  ( ( ( A  +  _i )  e.  CC  /\  ( A  +  _i )  =/=  0  /\  0  <_  ( Re `  ( A  +  _i )
) )  ->  ( log `  ( _i  x.  ( A  +  _i ) ) )  =  ( ( log `  ( A  +  _i )
)  +  ( _i  x.  ( pi  / 
2 ) ) ) )
10673, 103, 104, 105syl3anc 1227 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( log `  ( _i  x.  ( A  +  _i ) ) )  =  ( ( log `  ( A  +  _i )
)  +  ( _i  x.  ( pi  / 
2 ) ) ) )
107106oveq1d 6292 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( log `  (
_i  x.  ( A  +  _i ) ) )  -  ( _i  x.  pi ) )  =  ( ( ( log `  ( A  +  _i )
)  +  ( _i  x.  ( pi  / 
2 ) ) )  -  ( _i  x.  pi ) ) )
10873, 103logcld 22823 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( log `  ( A  +  _i ) )  e.  CC )
10961a1i 11 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
_i  x.  ( pi  /  2 ) )  e.  CC )
110 picn 22717 . . . . . . . . . . 11  |-  pi  e.  CC
1112, 110mulcli 9599 . . . . . . . . . 10  |-  ( _i  x.  pi )  e.  CC
112111a1i 11 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
_i  x.  pi )  e.  CC )
113108, 109, 112addsubassd 9951 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( ( log `  ( A  +  _i )
)  +  ( _i  x.  ( pi  / 
2 ) ) )  -  ( _i  x.  pi ) )  =  ( ( log `  ( A  +  _i )
)  +  ( ( _i  x.  ( pi 
/  2 ) )  -  ( _i  x.  pi ) ) ) )
114107, 113eqtrd 2482 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( log `  (
_i  x.  ( A  +  _i ) ) )  -  ( _i  x.  pi ) )  =  ( ( log `  ( A  +  _i )
)  +  ( ( _i  x.  ( pi 
/  2 ) )  -  ( _i  x.  pi ) ) ) )
11587, 98, 1143eqtr3d 2490 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( log `  ( 1  -  ( _i  x.  A
) ) )  =  ( ( log `  ( A  +  _i )
)  +  ( ( _i  x.  ( pi 
/  2 ) )  -  ( _i  x.  pi ) ) ) )
116115fveq2d 5856 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  -  (
_i  x.  A )
) ) )  =  ( Im `  (
( log `  ( A  +  _i )
)  +  ( ( _i  x.  ( pi 
/  2 ) )  -  ( _i  x.  pi ) ) ) ) )
11761, 111subcli 9895 . . . . . . 7  |-  ( ( _i  x.  ( pi 
/  2 ) )  -  ( _i  x.  pi ) )  e.  CC
118 imadd 12941 . . . . . . 7  |-  ( ( ( log `  ( A  +  _i )
)  e.  CC  /\  ( ( _i  x.  ( pi  /  2
) )  -  (
_i  x.  pi )
)  e.  CC )  ->  ( Im `  ( ( log `  ( A  +  _i )
)  +  ( ( _i  x.  ( pi 
/  2 ) )  -  ( _i  x.  pi ) ) ) )  =  ( ( Im
`  ( log `  ( A  +  _i )
) )  +  ( Im `  ( ( _i  x.  ( pi 
/  2 ) )  -  ( _i  x.  pi ) ) ) ) )
119108, 117, 118sylancl 662 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( ( log `  ( A  +  _i ) )  +  ( ( _i  x.  (
pi  /  2 ) )  -  ( _i  x.  pi ) ) ) )  =  ( ( Im `  ( log `  ( A  +  _i ) ) )  +  ( Im `  (
( _i  x.  (
pi  /  2 ) )  -  ( _i  x.  pi ) ) ) ) )
120 imsub 12942 . . . . . . . . 9  |-  ( ( ( _i  x.  (
pi  /  2 ) )  e.  CC  /\  ( _i  x.  pi )  e.  CC )  ->  ( Im `  (
( _i  x.  (
pi  /  2 ) )  -  ( _i  x.  pi ) ) )  =  ( ( Im `  ( _i  x.  ( pi  / 
2 ) ) )  -  ( Im `  ( _i  x.  pi ) ) ) )
12161, 111, 120mp2an 672 . . . . . . . 8  |-  ( Im
`  ( ( _i  x.  ( pi  / 
2 ) )  -  ( _i  x.  pi ) ) )  =  ( ( Im `  ( _i  x.  (
pi  /  2 ) ) )  -  (
Im `  ( _i  x.  pi ) ) )
122 reim 12916 . . . . . . . . . . 11  |-  ( pi  e.  CC  ->  (
Re `  pi )  =  ( Im `  ( _i  x.  pi ) ) )
123110, 122ax-mp 5 . . . . . . . . . 10  |-  ( Re
`  pi )  =  ( Im `  (
_i  x.  pi )
)
124 pire 22716 . . . . . . . . . . 11  |-  pi  e.  RR
125 rere 12929 . . . . . . . . . . 11  |-  ( pi  e.  RR  ->  (
Re `  pi )  =  pi )
126124, 125ax-mp 5 . . . . . . . . . 10  |-  ( Re
`  pi )  =  pi
127123, 126eqtr3i 2472 . . . . . . . . 9  |-  ( Im
`  ( _i  x.  pi ) )  =  pi
12868, 127oveq12i 6289 . . . . . . . 8  |-  ( ( Im `  ( _i  x.  ( pi  / 
2 ) ) )  -  ( Im `  ( _i  x.  pi ) ) )  =  ( ( pi  / 
2 )  -  pi )
12960negcli 9887 . . . . . . . . 9  |-  -u (
pi  /  2 )  e.  CC
130110, 60negsubi 9897 . . . . . . . . . 10  |-  ( pi  +  -u ( pi  / 
2 ) )  =  ( pi  -  (
pi  /  2 ) )
131 pidiv2halves 22725 . . . . . . . . . . 11  |-  ( ( pi  /  2 )  +  ( pi  / 
2 ) )  =  pi
132110, 60, 60, 131subaddrii 9909 . . . . . . . . . 10  |-  ( pi 
-  ( pi  / 
2 ) )  =  ( pi  /  2
)
133130, 132eqtri 2470 . . . . . . . . 9  |-  ( pi  +  -u ( pi  / 
2 ) )  =  ( pi  /  2
)
13460, 110, 129, 133subaddrii 9909 . . . . . . . 8  |-  ( ( pi  /  2 )  -  pi )  = 
-u ( pi  / 
2 )
135121, 128, 1343eqtri 2474 . . . . . . 7  |-  ( Im
`  ( ( _i  x.  ( pi  / 
2 ) )  -  ( _i  x.  pi ) ) )  = 
-u ( pi  / 
2 )
136135oveq2i 6288 . . . . . 6  |-  ( ( Im `  ( log `  ( A  +  _i ) ) )  +  ( Im `  (
( _i  x.  (
pi  /  2 ) )  -  ( _i  x.  pi ) ) ) )  =  ( ( Im `  ( log `  ( A  +  _i ) ) )  + 
-u ( pi  / 
2 ) )
137119, 136syl6eq 2498 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( ( log `  ( A  +  _i ) )  +  ( ( _i  x.  (
pi  /  2 ) )  -  ( _i  x.  pi ) ) ) )  =  ( ( Im `  ( log `  ( A  +  _i ) ) )  + 
-u ( pi  / 
2 ) ) )
138116, 137eqtrd 2482 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  -  (
_i  x.  A )
) ) )  =  ( ( Im `  ( log `  ( A  +  _i ) ) )  +  -u (
pi  /  2 ) ) )
13971, 138oveq12d 6295 . . 3  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  -  ( Im `  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) )  =  ( ( ( Im `  ( log `  ( A  -  _i ) ) )  +  ( pi 
/  2 ) )  -  ( ( Im
`  ( log `  ( A  +  _i )
) )  +  -u ( pi  /  2
) ) ) )
14058imcld 13002 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( A  -  _i ) ) )  e.  RR )
141140recnd 9620 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( A  -  _i ) ) )  e.  CC )
14260a1i 11 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
pi  /  2 )  e.  CC )
143108imcld 13002 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( A  +  _i ) ) )  e.  RR )
144143recnd 9620 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( A  +  _i ) ) )  e.  CC )
145129a1i 11 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u (
pi  /  2 )  e.  CC )
146141, 142, 144, 145addsub4d 9978 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( ( Im `  ( log `  ( A  -  _i ) ) )  +  ( pi 
/  2 ) )  -  ( ( Im
`  ( log `  ( A  +  _i )
) )  +  -u ( pi  /  2
) ) )  =  ( ( ( Im
`  ( log `  ( A  -  _i )
) )  -  (
Im `  ( log `  ( A  +  _i ) ) ) )  +  ( ( pi 
/  2 )  -  -u ( pi  /  2
) ) ) )
14760, 60subnegi 9898 . . . . . 6  |-  ( ( pi  /  2 )  -  -u ( pi  / 
2 ) )  =  ( ( pi  / 
2 )  +  ( pi  /  2 ) )
148147, 131eqtri 2470 . . . . 5  |-  ( ( pi  /  2 )  -  -u ( pi  / 
2 ) )  =  pi
149148oveq2i 6288 . . . 4  |-  ( ( ( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im `  ( log `  ( A  +  _i ) ) ) )  +  ( ( pi 
/  2 )  -  -u ( pi  /  2
) ) )  =  ( ( ( Im
`  ( log `  ( A  -  _i )
) )  -  (
Im `  ( log `  ( A  +  _i ) ) ) )  +  pi )
150146, 149syl6eq 2498 . . 3  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( ( Im `  ( log `  ( A  -  _i ) ) )  +  ( pi 
/  2 ) )  -  ( ( Im
`  ( log `  ( A  +  _i )
) )  +  -u ( pi  /  2
) ) )  =  ( ( ( Im
`  ( log `  ( A  -  _i )
) )  -  (
Im `  ( log `  ( A  +  _i ) ) ) )  +  pi ) )
15117, 139, 1503eqtrd 2486 . 2  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( ( log `  ( 1  +  ( _i  x.  A
) ) )  -  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) )  =  ( ( ( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im
`  ( log `  ( A  +  _i )
) ) )  +  pi ) )
152140, 143resubcld 9988 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im `  ( log `  ( A  +  _i ) ) ) )  e.  RR )
153 readdcl 9573 . . . 4  |-  ( ( ( ( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im
`  ( log `  ( A  +  _i )
) ) )  e.  RR  /\  pi  e.  RR )  ->  ( ( ( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im `  ( log `  ( A  +  _i ) ) ) )  +  pi )  e.  RR )
154152, 124, 153sylancl 662 . . 3  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( ( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im
`  ( log `  ( A  +  _i )
) ) )  +  pi )  e.  RR )
155124renegcli 9880 . . . . . . 7  |-  -u pi  e.  RR
156155recni 9606 . . . . . 6  |-  -u pi  e.  CC
157156, 110negsubi 9897 . . . . 5  |-  ( -u pi  +  -u pi )  =  ( -u pi  -  pi )
158155a1i 11 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u pi  e.  RR )
159143renegcld 9987 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u (
Im `  ( log `  ( A  +  _i ) ) )  e.  RR )
16030, 47logimcld 22824 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( -u pi  <  ( Im
`  ( log `  ( A  -  _i )
) )  /\  (
Im `  ( log `  ( A  -  _i ) ) )  <_  pi ) )
161160simpld 459 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u pi  <  ( Im `  ( log `  ( A  -  _i ) ) ) )
16273, 103logimcld 22824 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( -u pi  <  ( Im
`  ( log `  ( A  +  _i )
) )  /\  (
Im `  ( log `  ( A  +  _i ) ) )  <_  pi ) )
163162simprd 463 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( A  +  _i ) ) )  <_  pi )
164 leneg 10056 . . . . . . . . 9  |-  ( ( ( Im `  ( log `  ( A  +  _i ) ) )  e.  RR  /\  pi  e.  RR )  ->  ( ( Im `  ( log `  ( A  +  _i ) ) )  <_  pi 
<-> 
-u pi  <_  -u (
Im `  ( log `  ( A  +  _i ) ) ) ) )
165143, 124, 164sylancl 662 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( log `  ( A  +  _i ) ) )  <_  pi 
<-> 
-u pi  <_  -u (
Im `  ( log `  ( A  +  _i ) ) ) ) )
166163, 165mpbid 210 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u pi  <_ 
-u ( Im `  ( log `  ( A  +  _i ) ) ) )
167158, 158, 140, 159, 161, 166ltleaddd 10173 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( -u pi  +  -u pi )  <  ( ( Im
`  ( log `  ( A  -  _i )
) )  +  -u ( Im `  ( log `  ( A  +  _i ) ) ) ) )
168141, 144negsubd 9937 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( log `  ( A  -  _i ) ) )  + 
-u ( Im `  ( log `  ( A  +  _i ) ) ) )  =  ( ( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im `  ( log `  ( A  +  _i ) ) ) ) )
169167, 168breqtrd 4457 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( -u pi  +  -u pi )  <  ( ( Im
`  ( log `  ( A  -  _i )
) )  -  (
Im `  ( log `  ( A  +  _i ) ) ) ) )
170157, 169syl5eqbrr 4467 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( -u pi  -  pi )  <  ( ( Im
`  ( log `  ( A  -  _i )
) )  -  (
Im `  ( log `  ( A  +  _i ) ) ) ) )
171124a1i 11 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  pi  e.  RR )
172158, 171, 152ltsubaddd 10149 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( -u pi  -  pi )  <  ( ( Im
`  ( log `  ( A  -  _i )
) )  -  (
Im `  ( log `  ( A  +  _i ) ) ) )  <->  -u pi  <  ( ( ( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im `  ( log `  ( A  +  _i ) ) ) )  +  pi ) ) )
173170, 172mpbid 210 . . 3  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u pi  <  ( ( ( Im
`  ( log `  ( A  -  _i )
) )  -  (
Im `  ( log `  ( A  +  _i ) ) ) )  +  pi ) )
174 0red 9595 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  0  e.  RR )
1756imcld 13002 . . . . . . . . . . . . 13  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  A )  e.  RR )
176 peano2rem 9886 . . . . . . . . . . . . 13  |-  ( ( Im `  A )  e.  RR  ->  (
( Im `  A
)  -  1 )  e.  RR )
177175, 176syl 16 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  A
)  -  1 )  e.  RR )
178 peano2re 9751 . . . . . . . . . . . . 13  |-  ( ( Im `  A )  e.  RR  ->  (
( Im `  A
)  +  1 )  e.  RR )
179175, 178syl 16 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  A
)  +  1 )  e.  RR )
180175ltm1d 10479 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  A
)  -  1 )  <  ( Im `  A ) )
181175ltp1d 10477 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  A )  <  ( ( Im `  A )  +  1 ) )
182177, 175, 179, 180, 181lttrd 9741 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  A
)  -  1 )  <  ( ( Im
`  A )  +  1 ) )
183 ltdiv1 10407 . . . . . . . . . . . 12  |-  ( ( ( ( Im `  A )  -  1 )  e.  RR  /\  ( ( Im `  A )  +  1 )  e.  RR  /\  ( ( Re `  A )  e.  RR  /\  0  <  ( Re
`  A ) ) )  ->  ( (
( Im `  A
)  -  1 )  <  ( ( Im
`  A )  +  1 )  <->  ( (
( Im `  A
)  -  1 )  /  ( Re `  A ) )  < 
( ( ( Im
`  A )  +  1 )  /  (
Re `  A )
) ) )
184177, 179, 35, 48, 183syl112anc 1231 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( ( Im `  A )  -  1 )  <  ( ( Im `  A )  +  1 )  <->  ( (
( Im `  A
)  -  1 )  /  ( Re `  A ) )  < 
( ( ( Im
`  A )  +  1 )  /  (
Re `  A )
) ) )
185182, 184mpbid 210 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( ( Im `  A )  -  1 )  /  ( Re
`  A ) )  <  ( ( ( Im `  A )  +  1 )  / 
( Re `  A
) ) )
186 imsub 12942 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  _i  e.  CC )  -> 
( Im `  ( A  -  _i )
)  =  ( ( Im `  A )  -  ( Im `  _i ) ) )
1876, 2, 186sylancl 662 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( A  -  _i ) )  =  ( ( Im `  A )  -  (
Im `  _i )
) )
188 imi 12964 . . . . . . . . . . . . 13  |-  ( Im
`  _i )  =  1
189188oveq2i 6288 . . . . . . . . . . . 12  |-  ( ( Im `  A )  -  ( Im `  _i ) )  =  ( ( Im `  A
)  -  1 )
190187, 189syl6eq 2498 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( A  -  _i ) )  =  ( ( Im `  A )  -  1 ) )
191190, 39oveq12d 6295 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( A  -  _i )
)  /  ( Re
`  ( A  -  _i ) ) )  =  ( ( ( Im
`  A )  - 
1 )  /  (
Re `  A )
) )
192 imadd 12941 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  _i  e.  CC )  -> 
( Im `  ( A  +  _i )
)  =  ( ( Im `  A )  +  ( Im `  _i ) ) )
1936, 2, 192sylancl 662 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( A  +  _i ) )  =  ( ( Im `  A )  +  ( Im `  _i ) ) )
194188oveq2i 6288 . . . . . . . . . . . 12  |-  ( ( Im `  A )  +  ( Im `  _i ) )  =  ( ( Im `  A
)  +  1 )
195193, 194syl6eq 2498 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( A  +  _i ) )  =  ( ( Im `  A )  +  1 ) )
196195, 83oveq12d 6295 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( A  +  _i )
)  /  ( Re
`  ( A  +  _i ) ) )  =  ( ( ( Im
`  A )  +  1 )  /  (
Re `  A )
) )
197185, 191, 1963brtr4d 4463 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( A  -  _i )
)  /  ( Re
`  ( A  -  _i ) ) )  < 
( ( Im `  ( A  +  _i ) )  /  (
Re `  ( A  +  _i ) ) ) )
198 tanarg 22869 . . . . . . . . . 10  |-  ( ( ( A  -  _i )  e.  CC  /\  (
Re `  ( A  -  _i ) )  =/=  0 )  ->  ( tan `  ( Im `  ( log `  ( A  -  _i ) ) ) )  =  ( ( Im `  ( A  -  _i )
)  /  ( Re
`  ( A  -  _i ) ) ) )
19930, 42, 198syl2anc 661 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( tan `  ( Im `  ( log `  ( A  -  _i ) ) ) )  =  ( ( Im `  ( A  -  _i )
)  /  ( Re
`  ( A  -  _i ) ) ) )
200 tanarg 22869 . . . . . . . . . 10  |-  ( ( ( A  +  _i )  e.  CC  /\  (
Re `  ( A  +  _i ) )  =/=  0 )  ->  ( tan `  ( Im `  ( log `  ( A  +  _i ) ) ) )  =  ( ( Im `  ( A  +  _i )
)  /  ( Re
`  ( A  +  _i ) ) ) )
20173, 99, 200syl2anc 661 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( tan `  ( Im `  ( log `  ( A  +  _i ) ) ) )  =  ( ( Im `  ( A  +  _i )
)  /  ( Re
`  ( A  +  _i ) ) ) )
202197, 199, 2013brtr4d 4463 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( tan `  ( Im `  ( log `  ( A  -  _i ) ) ) )  <  ( tan `  ( Im `  ( log `  ( A  +  _i ) ) ) ) )
20348, 39breqtrrd 4459 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  0  <  ( Re `  ( A  -  _i )
) )
204 argregt0 22860 . . . . . . . . . 10  |-  ( ( ( A  -  _i )  e.  CC  /\  0  <  ( Re `  ( A  -  _i )
) )  ->  (
Im `  ( log `  ( A  -  _i ) ) )  e.  ( -u ( pi 
/  2 ) (,) ( pi  /  2
) ) )
20530, 203, 204syl2anc 661 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( A  -  _i ) ) )  e.  ( -u ( pi 
/  2 ) (,) ( pi  /  2
) ) )
20648, 83breqtrrd 4459 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  0  <  ( Re `  ( A  +  _i )
) )
207 argregt0 22860 . . . . . . . . . 10  |-  ( ( ( A  +  _i )  e.  CC  /\  0  <  ( Re `  ( A  +  _i )
) )  ->  (
Im `  ( log `  ( A  +  _i ) ) )  e.  ( -u ( pi 
/  2 ) (,) ( pi  /  2
) ) )
20873, 206, 207syl2anc 661 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( A  +  _i ) ) )  e.  ( -u ( pi 
/  2 ) (,) ( pi  /  2
) ) )
209 tanord 22790 . . . . . . . . 9  |-  ( ( ( Im `  ( log `  ( A  -  _i ) ) )  e.  ( -u ( pi 
/  2 ) (,) ( pi  /  2
) )  /\  (
Im `  ( log `  ( A  +  _i ) ) )  e.  ( -u ( pi 
/  2 ) (,) ( pi  /  2
) ) )  -> 
( ( Im `  ( log `  ( A  -  _i ) ) )  <  ( Im
`  ( log `  ( A  +  _i )
) )  <->  ( tan `  ( Im `  ( log `  ( A  -  _i ) ) ) )  <  ( tan `  (
Im `  ( log `  ( A  +  _i ) ) ) ) ) )
210205, 208, 209syl2anc 661 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( log `  ( A  -  _i ) ) )  < 
( Im `  ( log `  ( A  +  _i ) ) )  <->  ( tan `  ( Im `  ( log `  ( A  -  _i ) ) ) )  <  ( tan `  (
Im `  ( log `  ( A  +  _i ) ) ) ) ) )
211202, 210mpbird 232 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( A  -  _i ) ) )  < 
( Im `  ( log `  ( A  +  _i ) ) ) )
212144addid2d 9779 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
0  +  ( Im
`  ( log `  ( A  +  _i )
) ) )  =  ( Im `  ( log `  ( A  +  _i ) ) ) )
213211, 212breqtrrd 4459 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( A  -  _i ) ) )  < 
( 0  +  ( Im `  ( log `  ( A  +  _i ) ) ) ) )
214140, 143, 174ltsubaddd 10149 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( ( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im
`  ( log `  ( A  +  _i )
) ) )  <  0  <->  ( Im `  ( log `  ( A  -  _i ) ) )  <  ( 0  +  ( Im `  ( log `  ( A  +  _i ) ) ) ) ) )
215213, 214mpbird 232 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im `  ( log `  ( A  +  _i ) ) ) )  <  0 )
216152, 174, 171, 215ltadd1dd 10164 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( ( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im
`  ( log `  ( A  +  _i )
) ) )  +  pi )  <  (
0  +  pi ) )
217110addid2i 9766 . . . 4  |-  ( 0  +  pi )  =  pi
218216, 217syl6breq 4472 . . 3  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( ( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im
`  ( log `  ( A  +  _i )
) ) )  +  pi )  <  pi )
219155rexri 9644 . . . 4  |-  -u pi  e.  RR*
220124rexri 9644 . . . 4  |-  pi  e.  RR*
221 elioo2 11574 . . . 4  |-  ( (
-u pi  e.  RR*  /\  pi  e.  RR* )  ->  ( ( ( ( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im `  ( log `  ( A  +  _i ) ) ) )  +  pi )  e.  ( -u pi (,) pi )  <->  ( ( ( ( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im `  ( log `  ( A  +  _i ) ) ) )  +  pi )  e.  RR  /\  -u pi  <  ( ( ( Im
`  ( log `  ( A  -  _i )
) )  -  (
Im `  ( log `  ( A  +  _i ) ) ) )  +  pi )  /\  ( ( ( Im
`  ( log `  ( A  -  _i )
) )  -  (
Im `  ( log `  ( A  +  _i ) ) ) )  +  pi )  < 
pi ) ) )
222219, 220, 221mp2an 672 . . 3  |-  ( ( ( ( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im
`  ( log `  ( A  +  _i )
) ) )  +  pi )  e.  (
-u pi (,) pi ) 
<->  ( ( ( ( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im `  ( log `  ( A  +  _i ) ) ) )  +  pi )  e.  RR  /\  -u pi  <  ( ( ( Im
`  ( log `  ( A  -  _i )
) )  -  (
Im `  ( log `  ( A  +  _i ) ) ) )  +  pi )  /\  ( ( ( Im
`  ( log `  ( A  -  _i )
) )  -  (
Im `  ( log `  ( A  +  _i ) ) ) )  +  pi )  < 
pi ) )
223154, 173, 218, 222syl3anbrc 1179 . 2  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( ( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im
`  ( log `  ( A  +  _i )
) ) )  +  pi )  e.  (
-u pi (,) pi ) )
224151, 223eqeltrd 2529 1  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( ( log `  ( 1  +  ( _i  x.  A
) ) )  -  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) )  e.  (
-u pi (,) pi ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802    =/= wne 2636   class class class wbr 4433   dom cdm 4985   ` cfv 5574  (class class class)co 6277   CCcc 9488   RRcr 9489   0cc0 9490   1c1 9491   _ici 9492    + caddc 9493    x. cmul 9495   RR*cxr 9625    < clt 9626    <_ cle 9627    - cmin 9805   -ucneg 9806    / cdiv 10207   2c2 10586   (,)cioo 11533   Recre 12904   Imcim 12905   tanctan 13674   picpi 13675   logclog 22807  arctancatan 23060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-inf2 8056  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-pre-sup 9568  ax-addf 9569  ax-mulf 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-fal 1387  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-int 4268  df-iun 4313  df-iin 4314  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-se 4825  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-isom 5583  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-of 6521  df-om 6682  df-1st 6781  df-2nd 6782  df-supp 6900  df-recs 7040  df-rdg 7074  df-1o 7128  df-2o 7129  df-oadd 7132  df-er 7309  df-map 7420  df-pm 7421  df-ixp 7468  df-en 7515  df-dom 7516  df-sdom 7517  df-fin 7518  df-fsupp 7828  df-fi 7869  df-sup 7899  df-oi 7933  df-card 8318  df-cda 8546  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-div 10208  df-nn 10538  df-2 10595  df-3 10596  df-4 10597  df-5 10598  df-6 10599  df-7 10600  df-8 10601  df-9 10602  df-10 10603  df-n0 10797  df-z 10866  df-dec 10980  df-uz 11086  df-q 11187  df-rp 11225  df-xneg 11322  df-xadd 11323  df-xmul 11324  df-ioo 11537  df-ioc 11538  df-ico 11539  df-icc 11540  df-fz 11677  df-fzo 11799  df-fl 11903  df-mod 11971  df-seq 12082  df-exp 12141  df-fac 12328  df-bc 12355  df-hash 12380  df-shft 12874  df-cj 12906  df-re 12907  df-im 12908  df-sqrt 13042  df-abs 13043  df-limsup 13268  df-clim 13285  df-rlim 13286  df-sum 13483  df-ef 13676  df-sin 13678  df-cos 13679  df-tan 13680  df-pi 13681  df-struct 14506  df-ndx 14507  df-slot 14508  df-base 14509  df-sets 14510  df-ress 14511  df-plusg 14582  df-mulr 14583  df-starv 14584  df-sca 14585  df-vsca 14586  df-ip 14587  df-tset 14588  df-ple 14589  df-ds 14591  df-unif 14592  df-hom 14593  df-cco 14594  df-rest 14692  df-topn 14693  df-0g 14711  df-gsum 14712  df-topgen 14713  df-pt 14714  df-prds 14717  df-xrs 14771  df-qtop 14776  df-imas 14777  df-xps 14779  df-mre 14855  df-mrc 14856  df-acs 14858  df-mgm 15741  df-sgrp 15780  df-mnd 15790  df-submnd 15836  df-mulg 15929  df-cntz 16224  df-cmn 16669  df-psmet 18279  df-xmet 18280  df-met 18281  df-bl 18282  df-mopn 18283  df-fbas 18284  df-fg 18285  df-cnfld 18289  df-top 19266  df-bases 19268  df-topon 19269  df-topsp 19270  df-cld 19386  df-ntr 19387  df-cls 19388  df-nei 19465  df-lp 19503  df-perf 19504  df-cn 19594  df-cnp 19595  df-haus 19682  df-tx 19929  df-hmeo 20122  df-fil 20213  df-fm 20305  df-flim 20306  df-flf 20307  df-xms 20689  df-ms 20690  df-tms 20691  df-cncf 21248  df-limc 22136  df-dv 22137  df-log 22809  df-atan 23063
This theorem is referenced by:  atanlogsub  23112  atanbndlem  23121
  Copyright terms: Public domain W3C validator