MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atanlogsublem Structured version   Unicode version

Theorem atanlogsublem 22322
Description: Lemma for atanlogsub 22323. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
atanlogsublem  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( ( log `  ( 1  +  ( _i  x.  A
) ) )  -  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) )  e.  (
-u pi (,) pi ) )

Proof of Theorem atanlogsublem
StepHypRef Expression
1 ax-1cn 9352 . . . . . 6  |-  1  e.  CC
2 ax-icn 9353 . . . . . . 7  |-  _i  e.  CC
3 simpl 457 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  A  e.  dom arctan )
4 atandm2 22284 . . . . . . . . 9  |-  ( A  e.  dom arctan  <->  ( A  e.  CC  /\  ( 1  -  ( _i  x.  A ) )  =/=  0  /\  ( 1  +  ( _i  x.  A ) )  =/=  0 ) )
53, 4sylib 196 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( A  e.  CC  /\  (
1  -  ( _i  x.  A ) )  =/=  0  /\  (
1  +  ( _i  x.  A ) )  =/=  0 ) )
65simp1d 1000 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  A  e.  CC )
7 mulcl 9378 . . . . . . 7  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
82, 6, 7sylancr 663 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
_i  x.  A )  e.  CC )
9 addcl 9376 . . . . . 6  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 1  +  ( _i  x.  A
) )  e.  CC )
101, 8, 9sylancr 663 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
1  +  ( _i  x.  A ) )  e.  CC )
115simp3d 1002 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
1  +  ( _i  x.  A ) )  =/=  0 )
1210, 11logcld 22034 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( log `  ( 1  +  ( _i  x.  A
) ) )  e.  CC )
13 subcl 9621 . . . . . 6  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 1  -  ( _i  x.  A
) )  e.  CC )
141, 8, 13sylancr 663 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
1  -  ( _i  x.  A ) )  e.  CC )
155simp2d 1001 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
1  -  ( _i  x.  A ) )  =/=  0 )
1614, 15logcld 22034 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( log `  ( 1  -  ( _i  x.  A
) ) )  e.  CC )
1712, 16imsubd 12718 . . 3  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( ( log `  ( 1  +  ( _i  x.  A
) ) )  -  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) )  =  ( ( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  -  ( Im `  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) ) )
182a1i 11 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  _i  e.  CC )
1918, 6, 18subdid 9812 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
_i  x.  ( A  -  _i ) )  =  ( ( _i  x.  A )  -  (
_i  x.  _i )
) )
20 ixi 9977 . . . . . . . . . . 11  |-  ( _i  x.  _i )  = 
-u 1
2120oveq2i 6114 . . . . . . . . . 10  |-  ( ( _i  x.  A )  -  ( _i  x.  _i ) )  =  ( ( _i  x.  A
)  -  -u 1
)
22 subneg 9670 . . . . . . . . . . 11  |-  ( ( ( _i  x.  A
)  e.  CC  /\  1  e.  CC )  ->  ( ( _i  x.  A )  -  -u 1
)  =  ( ( _i  x.  A )  +  1 ) )
238, 1, 22sylancl 662 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( _i  x.  A
)  -  -u 1
)  =  ( ( _i  x.  A )  +  1 ) )
2421, 23syl5eq 2487 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( _i  x.  A
)  -  ( _i  x.  _i ) )  =  ( ( _i  x.  A )  +  1 ) )
25 addcom 9567 . . . . . . . . . 10  |-  ( ( ( _i  x.  A
)  e.  CC  /\  1  e.  CC )  ->  ( ( _i  x.  A )  +  1 )  =  ( 1  +  ( _i  x.  A ) ) )
268, 1, 25sylancl 662 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( _i  x.  A
)  +  1 )  =  ( 1  +  ( _i  x.  A
) ) )
2719, 24, 263eqtrd 2479 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
_i  x.  ( A  -  _i ) )  =  ( 1  +  ( _i  x.  A ) ) )
2827fveq2d 5707 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( log `  ( _i  x.  ( A  -  _i ) ) )  =  ( log `  (
1  +  ( _i  x.  A ) ) ) )
29 subcl 9621 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  _i  e.  CC )  -> 
( A  -  _i )  e.  CC )
306, 2, 29sylancl 662 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( A  -  _i )  e.  CC )
31 resub 12628 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  _i  e.  CC )  -> 
( Re `  ( A  -  _i )
)  =  ( ( Re `  A )  -  ( Re `  _i ) ) )
326, 2, 31sylancl 662 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Re `  ( A  -  _i ) )  =  ( ( Re `  A )  -  (
Re `  _i )
) )
33 rei 12657 . . . . . . . . . . . . 13  |-  ( Re
`  _i )  =  0
3433oveq2i 6114 . . . . . . . . . . . 12  |-  ( ( Re `  A )  -  ( Re `  _i ) )  =  ( ( Re `  A
)  -  0 )
356recld 12695 . . . . . . . . . . . . . 14  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Re `  A )  e.  RR )
3635recnd 9424 . . . . . . . . . . . . 13  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Re `  A )  e.  CC )
3736subid1d 9720 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Re `  A
)  -  0 )  =  ( Re `  A ) )
3834, 37syl5eq 2487 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Re `  A
)  -  ( Re
`  _i ) )  =  ( Re `  A ) )
3932, 38eqtrd 2475 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Re `  ( A  -  _i ) )  =  ( Re `  A
) )
40 gt0ne0 9816 . . . . . . . . . . 11  |-  ( ( ( Re `  A
)  e.  RR  /\  0  <  ( Re `  A ) )  -> 
( Re `  A
)  =/=  0 )
4135, 40sylancom 667 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Re `  A )  =/=  0 )
4239, 41eqnetrd 2638 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Re `  ( A  -  _i ) )  =/=  0 )
43 fveq2 5703 . . . . . . . . . . 11  |-  ( ( A  -  _i )  =  0  ->  (
Re `  ( A  -  _i ) )  =  ( Re `  0
) )
44 re0 12653 . . . . . . . . . . 11  |-  ( Re
`  0 )  =  0
4543, 44syl6eq 2491 . . . . . . . . . 10  |-  ( ( A  -  _i )  =  0  ->  (
Re `  ( A  -  _i ) )  =  0 )
4645necon3i 2662 . . . . . . . . 9  |-  ( ( Re `  ( A  -  _i ) )  =/=  0  ->  ( A  -  _i )  =/=  0 )
4742, 46syl 16 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( A  -  _i )  =/=  0 )
48 simpr 461 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  0  <  ( Re `  A
) )
49 0re 9398 . . . . . . . . . . 11  |-  0  e.  RR
50 ltle 9475 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  ( Re `  A )  e.  RR )  -> 
( 0  <  (
Re `  A )  ->  0  <_  ( Re `  A ) ) )
5149, 35, 50sylancr 663 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
0  <  ( Re `  A )  ->  0  <_  ( Re `  A
) ) )
5248, 51mpd 15 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  0  <_  ( Re `  A
) )
5352, 39breqtrrd 4330 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  0  <_  ( Re `  ( A  -  _i )
) )
54 logimul 22075 . . . . . . . 8  |-  ( ( ( A  -  _i )  e.  CC  /\  ( A  -  _i )  =/=  0  /\  0  <_  ( Re `  ( A  -  _i )
) )  ->  ( log `  ( _i  x.  ( A  -  _i ) ) )  =  ( ( log `  ( A  -  _i )
)  +  ( _i  x.  ( pi  / 
2 ) ) ) )
5530, 47, 53, 54syl3anc 1218 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( log `  ( _i  x.  ( A  -  _i ) ) )  =  ( ( log `  ( A  -  _i )
)  +  ( _i  x.  ( pi  / 
2 ) ) ) )
5628, 55eqtr3d 2477 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( log `  ( 1  +  ( _i  x.  A
) ) )  =  ( ( log `  ( A  -  _i )
)  +  ( _i  x.  ( pi  / 
2 ) ) ) )
5756fveq2d 5707 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  =  ( Im `  (
( log `  ( A  -  _i )
)  +  ( _i  x.  ( pi  / 
2 ) ) ) ) )
5830, 47logcld 22034 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( log `  ( A  -  _i ) )  e.  CC )
59 halfpire 21938 . . . . . . . . 9  |-  ( pi 
/  2 )  e.  RR
6059recni 9410 . . . . . . . 8  |-  ( pi 
/  2 )  e.  CC
612, 60mulcli 9403 . . . . . . 7  |-  ( _i  x.  ( pi  / 
2 ) )  e.  CC
62 imadd 12635 . . . . . . 7  |-  ( ( ( log `  ( A  -  _i )
)  e.  CC  /\  ( _i  x.  (
pi  /  2 ) )  e.  CC )  ->  ( Im `  ( ( log `  ( A  -  _i )
)  +  ( _i  x.  ( pi  / 
2 ) ) ) )  =  ( ( Im `  ( log `  ( A  -  _i ) ) )  +  ( Im `  (
_i  x.  ( pi  /  2 ) ) ) ) )
6358, 61, 62sylancl 662 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( ( log `  ( A  -  _i ) )  +  ( _i  x.  ( pi 
/  2 ) ) ) )  =  ( ( Im `  ( log `  ( A  -  _i ) ) )  +  ( Im `  (
_i  x.  ( pi  /  2 ) ) ) ) )
64 reim 12610 . . . . . . . . 9  |-  ( ( pi  /  2 )  e.  CC  ->  (
Re `  ( pi  /  2 ) )  =  ( Im `  (
_i  x.  ( pi  /  2 ) ) ) )
6560, 64ax-mp 5 . . . . . . . 8  |-  ( Re
`  ( pi  / 
2 ) )  =  ( Im `  (
_i  x.  ( pi  /  2 ) ) )
66 rere 12623 . . . . . . . . 9  |-  ( ( pi  /  2 )  e.  RR  ->  (
Re `  ( pi  /  2 ) )  =  ( pi  /  2
) )
6759, 66ax-mp 5 . . . . . . . 8  |-  ( Re
`  ( pi  / 
2 ) )  =  ( pi  /  2
)
6865, 67eqtr3i 2465 . . . . . . 7  |-  ( Im
`  ( _i  x.  ( pi  /  2
) ) )  =  ( pi  /  2
)
6968oveq2i 6114 . . . . . 6  |-  ( ( Im `  ( log `  ( A  -  _i ) ) )  +  ( Im `  (
_i  x.  ( pi  /  2 ) ) ) )  =  ( ( Im `  ( log `  ( A  -  _i ) ) )  +  ( pi  /  2
) )
7063, 69syl6eq 2491 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( ( log `  ( A  -  _i ) )  +  ( _i  x.  ( pi 
/  2 ) ) ) )  =  ( ( Im `  ( log `  ( A  -  _i ) ) )  +  ( pi  /  2
) ) )
7157, 70eqtrd 2475 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  =  ( ( Im `  ( log `  ( A  -  _i ) ) )  +  ( pi 
/  2 ) ) )
72 addcl 9376 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  _i  e.  CC )  -> 
( A  +  _i )  e.  CC )
736, 2, 72sylancl 662 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( A  +  _i )  e.  CC )
74 mulcl 9378 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  ( A  +  _i )  e.  CC )  ->  ( _i  x.  ( A  +  _i )
)  e.  CC )
752, 73, 74sylancr 663 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
_i  x.  ( A  +  _i ) )  e.  CC )
76 reim 12610 . . . . . . . . . . 11  |-  ( ( A  +  _i )  e.  CC  ->  (
Re `  ( A  +  _i ) )  =  ( Im `  (
_i  x.  ( A  +  _i ) ) ) )
7773, 76syl 16 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Re `  ( A  +  _i ) )  =  ( Im `  (
_i  x.  ( A  +  _i ) ) ) )
78 readd 12627 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  _i  e.  CC )  -> 
( Re `  ( A  +  _i )
)  =  ( ( Re `  A )  +  ( Re `  _i ) ) )
796, 2, 78sylancl 662 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Re `  ( A  +  _i ) )  =  ( ( Re `  A )  +  ( Re `  _i ) ) )
8033oveq2i 6114 . . . . . . . . . . . 12  |-  ( ( Re `  A )  +  ( Re `  _i ) )  =  ( ( Re `  A
)  +  0 )
8136addid1d 9581 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Re `  A
)  +  0 )  =  ( Re `  A ) )
8280, 81syl5eq 2487 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Re `  A
)  +  ( Re
`  _i ) )  =  ( Re `  A ) )
8379, 82eqtrd 2475 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Re `  ( A  +  _i ) )  =  ( Re `  A
) )
8477, 83eqtr3d 2477 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( _i  x.  ( A  +  _i ) ) )  =  ( Re `  A
) )
8548, 84breqtrrd 4330 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  0  <  ( Im `  (
_i  x.  ( A  +  _i ) ) ) )
86 logneg2 22076 . . . . . . . 8  |-  ( ( ( _i  x.  ( A  +  _i )
)  e.  CC  /\  0  <  ( Im `  ( _i  x.  ( A  +  _i )
) ) )  -> 
( log `  -u (
_i  x.  ( A  +  _i ) ) )  =  ( ( log `  ( _i  x.  ( A  +  _i )
) )  -  (
_i  x.  pi )
) )
8775, 85, 86syl2anc 661 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( log `  -u ( _i  x.  ( A  +  _i ) ) )  =  ( ( log `  (
_i  x.  ( A  +  _i ) ) )  -  ( _i  x.  pi ) ) )
8818, 6, 18adddid 9422 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
_i  x.  ( A  +  _i ) )  =  ( ( _i  x.  A )  +  ( _i  x.  _i ) ) )
8920oveq2i 6114 . . . . . . . . . . . 12  |-  ( ( _i  x.  A )  +  ( _i  x.  _i ) )  =  ( ( _i  x.  A
)  +  -u 1
)
90 negsub 9669 . . . . . . . . . . . . 13  |-  ( ( ( _i  x.  A
)  e.  CC  /\  1  e.  CC )  ->  ( ( _i  x.  A )  +  -u
1 )  =  ( ( _i  x.  A
)  -  1 ) )
918, 1, 90sylancl 662 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( _i  x.  A
)  +  -u 1
)  =  ( ( _i  x.  A )  -  1 ) )
9289, 91syl5eq 2487 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( _i  x.  A
)  +  ( _i  x.  _i ) )  =  ( ( _i  x.  A )  - 
1 ) )
9388, 92eqtrd 2475 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
_i  x.  ( A  +  _i ) )  =  ( ( _i  x.  A )  -  1 ) )
9493negeqd 9616 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u (
_i  x.  ( A  +  _i ) )  = 
-u ( ( _i  x.  A )  - 
1 ) )
95 negsubdi2 9680 . . . . . . . . . 10  |-  ( ( ( _i  x.  A
)  e.  CC  /\  1  e.  CC )  -> 
-u ( ( _i  x.  A )  - 
1 )  =  ( 1  -  ( _i  x.  A ) ) )
968, 1, 95sylancl 662 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u (
( _i  x.  A
)  -  1 )  =  ( 1  -  ( _i  x.  A
) ) )
9794, 96eqtrd 2475 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u (
_i  x.  ( A  +  _i ) )  =  ( 1  -  (
_i  x.  A )
) )
9897fveq2d 5707 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( log `  -u ( _i  x.  ( A  +  _i ) ) )  =  ( log `  (
1  -  ( _i  x.  A ) ) ) )
9983, 41eqnetrd 2638 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Re `  ( A  +  _i ) )  =/=  0 )
100 fveq2 5703 . . . . . . . . . . . . 13  |-  ( ( A  +  _i )  =  0  ->  (
Re `  ( A  +  _i ) )  =  ( Re `  0
) )
101100, 44syl6eq 2491 . . . . . . . . . . . 12  |-  ( ( A  +  _i )  =  0  ->  (
Re `  ( A  +  _i ) )  =  0 )
102101necon3i 2662 . . . . . . . . . . 11  |-  ( ( Re `  ( A  +  _i ) )  =/=  0  ->  ( A  +  _i )  =/=  0 )
10399, 102syl 16 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( A  +  _i )  =/=  0 )
10452, 83breqtrrd 4330 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  0  <_  ( Re `  ( A  +  _i )
) )
105 logimul 22075 . . . . . . . . . 10  |-  ( ( ( A  +  _i )  e.  CC  /\  ( A  +  _i )  =/=  0  /\  0  <_  ( Re `  ( A  +  _i )
) )  ->  ( log `  ( _i  x.  ( A  +  _i ) ) )  =  ( ( log `  ( A  +  _i )
)  +  ( _i  x.  ( pi  / 
2 ) ) ) )
10673, 103, 104, 105syl3anc 1218 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( log `  ( _i  x.  ( A  +  _i ) ) )  =  ( ( log `  ( A  +  _i )
)  +  ( _i  x.  ( pi  / 
2 ) ) ) )
107106oveq1d 6118 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( log `  (
_i  x.  ( A  +  _i ) ) )  -  ( _i  x.  pi ) )  =  ( ( ( log `  ( A  +  _i )
)  +  ( _i  x.  ( pi  / 
2 ) ) )  -  ( _i  x.  pi ) ) )
10873, 103logcld 22034 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( log `  ( A  +  _i ) )  e.  CC )
10961a1i 11 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
_i  x.  ( pi  /  2 ) )  e.  CC )
110 picn 21934 . . . . . . . . . . 11  |-  pi  e.  CC
1112, 110mulcli 9403 . . . . . . . . . 10  |-  ( _i  x.  pi )  e.  CC
112111a1i 11 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
_i  x.  pi )  e.  CC )
113108, 109, 112addsubassd 9751 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( ( log `  ( A  +  _i )
)  +  ( _i  x.  ( pi  / 
2 ) ) )  -  ( _i  x.  pi ) )  =  ( ( log `  ( A  +  _i )
)  +  ( ( _i  x.  ( pi 
/  2 ) )  -  ( _i  x.  pi ) ) ) )
114107, 113eqtrd 2475 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( log `  (
_i  x.  ( A  +  _i ) ) )  -  ( _i  x.  pi ) )  =  ( ( log `  ( A  +  _i )
)  +  ( ( _i  x.  ( pi 
/  2 ) )  -  ( _i  x.  pi ) ) ) )
11587, 98, 1143eqtr3d 2483 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( log `  ( 1  -  ( _i  x.  A
) ) )  =  ( ( log `  ( A  +  _i )
)  +  ( ( _i  x.  ( pi 
/  2 ) )  -  ( _i  x.  pi ) ) ) )
116115fveq2d 5707 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  -  (
_i  x.  A )
) ) )  =  ( Im `  (
( log `  ( A  +  _i )
)  +  ( ( _i  x.  ( pi 
/  2 ) )  -  ( _i  x.  pi ) ) ) ) )
11761, 111subcli 9696 . . . . . . 7  |-  ( ( _i  x.  ( pi 
/  2 ) )  -  ( _i  x.  pi ) )  e.  CC
118 imadd 12635 . . . . . . 7  |-  ( ( ( log `  ( A  +  _i )
)  e.  CC  /\  ( ( _i  x.  ( pi  /  2
) )  -  (
_i  x.  pi )
)  e.  CC )  ->  ( Im `  ( ( log `  ( A  +  _i )
)  +  ( ( _i  x.  ( pi 
/  2 ) )  -  ( _i  x.  pi ) ) ) )  =  ( ( Im
`  ( log `  ( A  +  _i )
) )  +  ( Im `  ( ( _i  x.  ( pi 
/  2 ) )  -  ( _i  x.  pi ) ) ) ) )
119108, 117, 118sylancl 662 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( ( log `  ( A  +  _i ) )  +  ( ( _i  x.  (
pi  /  2 ) )  -  ( _i  x.  pi ) ) ) )  =  ( ( Im `  ( log `  ( A  +  _i ) ) )  +  ( Im `  (
( _i  x.  (
pi  /  2 ) )  -  ( _i  x.  pi ) ) ) ) )
120 imsub 12636 . . . . . . . . 9  |-  ( ( ( _i  x.  (
pi  /  2 ) )  e.  CC  /\  ( _i  x.  pi )  e.  CC )  ->  ( Im `  (
( _i  x.  (
pi  /  2 ) )  -  ( _i  x.  pi ) ) )  =  ( ( Im `  ( _i  x.  ( pi  / 
2 ) ) )  -  ( Im `  ( _i  x.  pi ) ) ) )
12161, 111, 120mp2an 672 . . . . . . . 8  |-  ( Im
`  ( ( _i  x.  ( pi  / 
2 ) )  -  ( _i  x.  pi ) ) )  =  ( ( Im `  ( _i  x.  (
pi  /  2 ) ) )  -  (
Im `  ( _i  x.  pi ) ) )
122 reim 12610 . . . . . . . . . . 11  |-  ( pi  e.  CC  ->  (
Re `  pi )  =  ( Im `  ( _i  x.  pi ) ) )
123110, 122ax-mp 5 . . . . . . . . . 10  |-  ( Re
`  pi )  =  ( Im `  (
_i  x.  pi )
)
124 pire 21933 . . . . . . . . . . 11  |-  pi  e.  RR
125 rere 12623 . . . . . . . . . . 11  |-  ( pi  e.  RR  ->  (
Re `  pi )  =  pi )
126124, 125ax-mp 5 . . . . . . . . . 10  |-  ( Re
`  pi )  =  pi
127123, 126eqtr3i 2465 . . . . . . . . 9  |-  ( Im
`  ( _i  x.  pi ) )  =  pi
12868, 127oveq12i 6115 . . . . . . . 8  |-  ( ( Im `  ( _i  x.  ( pi  / 
2 ) ) )  -  ( Im `  ( _i  x.  pi ) ) )  =  ( ( pi  / 
2 )  -  pi )
12960negcli 9688 . . . . . . . . 9  |-  -u (
pi  /  2 )  e.  CC
130110, 60negsubi 9698 . . . . . . . . . 10  |-  ( pi  +  -u ( pi  / 
2 ) )  =  ( pi  -  (
pi  /  2 ) )
131 pidiv2halves 21941 . . . . . . . . . . 11  |-  ( ( pi  /  2 )  +  ( pi  / 
2 ) )  =  pi
132110, 60, 60, 131subaddrii 9709 . . . . . . . . . 10  |-  ( pi 
-  ( pi  / 
2 ) )  =  ( pi  /  2
)
133130, 132eqtri 2463 . . . . . . . . 9  |-  ( pi  +  -u ( pi  / 
2 ) )  =  ( pi  /  2
)
13460, 110, 129, 133subaddrii 9709 . . . . . . . 8  |-  ( ( pi  /  2 )  -  pi )  = 
-u ( pi  / 
2 )
135121, 128, 1343eqtri 2467 . . . . . . 7  |-  ( Im
`  ( ( _i  x.  ( pi  / 
2 ) )  -  ( _i  x.  pi ) ) )  = 
-u ( pi  / 
2 )
136135oveq2i 6114 . . . . . 6  |-  ( ( Im `  ( log `  ( A  +  _i ) ) )  +  ( Im `  (
( _i  x.  (
pi  /  2 ) )  -  ( _i  x.  pi ) ) ) )  =  ( ( Im `  ( log `  ( A  +  _i ) ) )  + 
-u ( pi  / 
2 ) )
137119, 136syl6eq 2491 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( ( log `  ( A  +  _i ) )  +  ( ( _i  x.  (
pi  /  2 ) )  -  ( _i  x.  pi ) ) ) )  =  ( ( Im `  ( log `  ( A  +  _i ) ) )  + 
-u ( pi  / 
2 ) ) )
138116, 137eqtrd 2475 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  -  (
_i  x.  A )
) ) )  =  ( ( Im `  ( log `  ( A  +  _i ) ) )  +  -u (
pi  /  2 ) ) )
13971, 138oveq12d 6121 . . 3  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  -  ( Im `  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) )  =  ( ( ( Im `  ( log `  ( A  -  _i ) ) )  +  ( pi 
/  2 ) )  -  ( ( Im
`  ( log `  ( A  +  _i )
) )  +  -u ( pi  /  2
) ) ) )
14058imcld 12696 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( A  -  _i ) ) )  e.  RR )
141140recnd 9424 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( A  -  _i ) ) )  e.  CC )
14260a1i 11 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
pi  /  2 )  e.  CC )
143108imcld 12696 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( A  +  _i ) ) )  e.  RR )
144143recnd 9424 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( A  +  _i ) ) )  e.  CC )
145129a1i 11 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u (
pi  /  2 )  e.  CC )
146141, 142, 144, 145addsub4d 9778 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( ( Im `  ( log `  ( A  -  _i ) ) )  +  ( pi 
/  2 ) )  -  ( ( Im
`  ( log `  ( A  +  _i )
) )  +  -u ( pi  /  2
) ) )  =  ( ( ( Im
`  ( log `  ( A  -  _i )
) )  -  (
Im `  ( log `  ( A  +  _i ) ) ) )  +  ( ( pi 
/  2 )  -  -u ( pi  /  2
) ) ) )
14760, 60subnegi 9699 . . . . . 6  |-  ( ( pi  /  2 )  -  -u ( pi  / 
2 ) )  =  ( ( pi  / 
2 )  +  ( pi  /  2 ) )
148147, 131eqtri 2463 . . . . 5  |-  ( ( pi  /  2 )  -  -u ( pi  / 
2 ) )  =  pi
149148oveq2i 6114 . . . 4  |-  ( ( ( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im `  ( log `  ( A  +  _i ) ) ) )  +  ( ( pi 
/  2 )  -  -u ( pi  /  2
) ) )  =  ( ( ( Im
`  ( log `  ( A  -  _i )
) )  -  (
Im `  ( log `  ( A  +  _i ) ) ) )  +  pi )
150146, 149syl6eq 2491 . . 3  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( ( Im `  ( log `  ( A  -  _i ) ) )  +  ( pi 
/  2 ) )  -  ( ( Im
`  ( log `  ( A  +  _i )
) )  +  -u ( pi  /  2
) ) )  =  ( ( ( Im
`  ( log `  ( A  -  _i )
) )  -  (
Im `  ( log `  ( A  +  _i ) ) ) )  +  pi ) )
15117, 139, 1503eqtrd 2479 . 2  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( ( log `  ( 1  +  ( _i  x.  A
) ) )  -  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) )  =  ( ( ( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im
`  ( log `  ( A  +  _i )
) ) )  +  pi ) )
152140, 143resubcld 9788 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im `  ( log `  ( A  +  _i ) ) ) )  e.  RR )
153 readdcl 9377 . . . 4  |-  ( ( ( ( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im
`  ( log `  ( A  +  _i )
) ) )  e.  RR  /\  pi  e.  RR )  ->  ( ( ( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im `  ( log `  ( A  +  _i ) ) ) )  +  pi )  e.  RR )
154152, 124, 153sylancl 662 . . 3  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( ( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im
`  ( log `  ( A  +  _i )
) ) )  +  pi )  e.  RR )
155124renegcli 9682 . . . . . . 7  |-  -u pi  e.  RR
156155recni 9410 . . . . . 6  |-  -u pi  e.  CC
157156, 110negsubi 9698 . . . . 5  |-  ( -u pi  +  -u pi )  =  ( -u pi  -  pi )
158155a1i 11 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u pi  e.  RR )
159143renegcld 9787 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u (
Im `  ( log `  ( A  +  _i ) ) )  e.  RR )
16030, 47logimcld 22035 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( -u pi  <  ( Im
`  ( log `  ( A  -  _i )
) )  /\  (
Im `  ( log `  ( A  -  _i ) ) )  <_  pi ) )
161160simpld 459 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u pi  <  ( Im `  ( log `  ( A  -  _i ) ) ) )
16273, 103logimcld 22035 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( -u pi  <  ( Im
`  ( log `  ( A  +  _i )
) )  /\  (
Im `  ( log `  ( A  +  _i ) ) )  <_  pi ) )
163162simprd 463 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( A  +  _i ) ) )  <_  pi )
164 leneg 9854 . . . . . . . . 9  |-  ( ( ( Im `  ( log `  ( A  +  _i ) ) )  e.  RR  /\  pi  e.  RR )  ->  ( ( Im `  ( log `  ( A  +  _i ) ) )  <_  pi 
<-> 
-u pi  <_  -u (
Im `  ( log `  ( A  +  _i ) ) ) ) )
165143, 124, 164sylancl 662 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( log `  ( A  +  _i ) ) )  <_  pi 
<-> 
-u pi  <_  -u (
Im `  ( log `  ( A  +  _i ) ) ) ) )
166163, 165mpbid 210 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u pi  <_ 
-u ( Im `  ( log `  ( A  +  _i ) ) ) )
167158, 158, 140, 159, 161, 166ltleaddd 9971 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( -u pi  +  -u pi )  <  ( ( Im
`  ( log `  ( A  -  _i )
) )  +  -u ( Im `  ( log `  ( A  +  _i ) ) ) ) )
168141, 144negsubd 9737 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( log `  ( A  -  _i ) ) )  + 
-u ( Im `  ( log `  ( A  +  _i ) ) ) )  =  ( ( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im `  ( log `  ( A  +  _i ) ) ) ) )
169167, 168breqtrd 4328 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( -u pi  +  -u pi )  <  ( ( Im
`  ( log `  ( A  -  _i )
) )  -  (
Im `  ( log `  ( A  +  _i ) ) ) ) )
170157, 169syl5eqbrr 4338 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( -u pi  -  pi )  <  ( ( Im
`  ( log `  ( A  -  _i )
) )  -  (
Im `  ( log `  ( A  +  _i ) ) ) ) )
171124a1i 11 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  pi  e.  RR )
172158, 171, 152ltsubaddd 9947 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( -u pi  -  pi )  <  ( ( Im
`  ( log `  ( A  -  _i )
) )  -  (
Im `  ( log `  ( A  +  _i ) ) ) )  <->  -u pi  <  ( ( ( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im `  ( log `  ( A  +  _i ) ) ) )  +  pi ) ) )
173170, 172mpbid 210 . . 3  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u pi  <  ( ( ( Im
`  ( log `  ( A  -  _i )
) )  -  (
Im `  ( log `  ( A  +  _i ) ) ) )  +  pi ) )
174 0red 9399 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  0  e.  RR )
1756imcld 12696 . . . . . . . . . . . . 13  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  A )  e.  RR )
176 peano2rem 9687 . . . . . . . . . . . . 13  |-  ( ( Im `  A )  e.  RR  ->  (
( Im `  A
)  -  1 )  e.  RR )
177175, 176syl 16 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  A
)  -  1 )  e.  RR )
178 peano2re 9554 . . . . . . . . . . . . 13  |-  ( ( Im `  A )  e.  RR  ->  (
( Im `  A
)  +  1 )  e.  RR )
179175, 178syl 16 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  A
)  +  1 )  e.  RR )
180175ltm1d 10277 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  A
)  -  1 )  <  ( Im `  A ) )
181175ltp1d 10275 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  A )  <  ( ( Im `  A )  +  1 ) )
182177, 175, 179, 180, 181lttrd 9544 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  A
)  -  1 )  <  ( ( Im
`  A )  +  1 ) )
183 ltdiv1 10205 . . . . . . . . . . . 12  |-  ( ( ( ( Im `  A )  -  1 )  e.  RR  /\  ( ( Im `  A )  +  1 )  e.  RR  /\  ( ( Re `  A )  e.  RR  /\  0  <  ( Re
`  A ) ) )  ->  ( (
( Im `  A
)  -  1 )  <  ( ( Im
`  A )  +  1 )  <->  ( (
( Im `  A
)  -  1 )  /  ( Re `  A ) )  < 
( ( ( Im
`  A )  +  1 )  /  (
Re `  A )
) ) )
184177, 179, 35, 48, 183syl112anc 1222 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( ( Im `  A )  -  1 )  <  ( ( Im `  A )  +  1 )  <->  ( (
( Im `  A
)  -  1 )  /  ( Re `  A ) )  < 
( ( ( Im
`  A )  +  1 )  /  (
Re `  A )
) ) )
185182, 184mpbid 210 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( ( Im `  A )  -  1 )  /  ( Re
`  A ) )  <  ( ( ( Im `  A )  +  1 )  / 
( Re `  A
) ) )
186 imsub 12636 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  _i  e.  CC )  -> 
( Im `  ( A  -  _i )
)  =  ( ( Im `  A )  -  ( Im `  _i ) ) )
1876, 2, 186sylancl 662 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( A  -  _i ) )  =  ( ( Im `  A )  -  (
Im `  _i )
) )
188 imi 12658 . . . . . . . . . . . . 13  |-  ( Im
`  _i )  =  1
189188oveq2i 6114 . . . . . . . . . . . 12  |-  ( ( Im `  A )  -  ( Im `  _i ) )  =  ( ( Im `  A
)  -  1 )
190187, 189syl6eq 2491 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( A  -  _i ) )  =  ( ( Im `  A )  -  1 ) )
191190, 39oveq12d 6121 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( A  -  _i )
)  /  ( Re
`  ( A  -  _i ) ) )  =  ( ( ( Im
`  A )  - 
1 )  /  (
Re `  A )
) )
192 imadd 12635 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  _i  e.  CC )  -> 
( Im `  ( A  +  _i )
)  =  ( ( Im `  A )  +  ( Im `  _i ) ) )
1936, 2, 192sylancl 662 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( A  +  _i ) )  =  ( ( Im `  A )  +  ( Im `  _i ) ) )
194188oveq2i 6114 . . . . . . . . . . . 12  |-  ( ( Im `  A )  +  ( Im `  _i ) )  =  ( ( Im `  A
)  +  1 )
195193, 194syl6eq 2491 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( A  +  _i ) )  =  ( ( Im `  A )  +  1 ) )
196195, 83oveq12d 6121 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( A  +  _i )
)  /  ( Re
`  ( A  +  _i ) ) )  =  ( ( ( Im
`  A )  +  1 )  /  (
Re `  A )
) )
197185, 191, 1963brtr4d 4334 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( A  -  _i )
)  /  ( Re
`  ( A  -  _i ) ) )  < 
( ( Im `  ( A  +  _i ) )  /  (
Re `  ( A  +  _i ) ) ) )
198 tanarg 22080 . . . . . . . . . 10  |-  ( ( ( A  -  _i )  e.  CC  /\  (
Re `  ( A  -  _i ) )  =/=  0 )  ->  ( tan `  ( Im `  ( log `  ( A  -  _i ) ) ) )  =  ( ( Im `  ( A  -  _i )
)  /  ( Re
`  ( A  -  _i ) ) ) )
19930, 42, 198syl2anc 661 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( tan `  ( Im `  ( log `  ( A  -  _i ) ) ) )  =  ( ( Im `  ( A  -  _i )
)  /  ( Re
`  ( A  -  _i ) ) ) )
200 tanarg 22080 . . . . . . . . . 10  |-  ( ( ( A  +  _i )  e.  CC  /\  (
Re `  ( A  +  _i ) )  =/=  0 )  ->  ( tan `  ( Im `  ( log `  ( A  +  _i ) ) ) )  =  ( ( Im `  ( A  +  _i )
)  /  ( Re
`  ( A  +  _i ) ) ) )
20173, 99, 200syl2anc 661 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( tan `  ( Im `  ( log `  ( A  +  _i ) ) ) )  =  ( ( Im `  ( A  +  _i )
)  /  ( Re
`  ( A  +  _i ) ) ) )
202197, 199, 2013brtr4d 4334 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( tan `  ( Im `  ( log `  ( A  -  _i ) ) ) )  <  ( tan `  ( Im `  ( log `  ( A  +  _i ) ) ) ) )
20348, 39breqtrrd 4330 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  0  <  ( Re `  ( A  -  _i )
) )
204 argregt0 22071 . . . . . . . . . 10  |-  ( ( ( A  -  _i )  e.  CC  /\  0  <  ( Re `  ( A  -  _i )
) )  ->  (
Im `  ( log `  ( A  -  _i ) ) )  e.  ( -u ( pi 
/  2 ) (,) ( pi  /  2
) ) )
20530, 203, 204syl2anc 661 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( A  -  _i ) ) )  e.  ( -u ( pi 
/  2 ) (,) ( pi  /  2
) ) )
20648, 83breqtrrd 4330 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  0  <  ( Re `  ( A  +  _i )
) )
207 argregt0 22071 . . . . . . . . . 10  |-  ( ( ( A  +  _i )  e.  CC  /\  0  <  ( Re `  ( A  +  _i )
) )  ->  (
Im `  ( log `  ( A  +  _i ) ) )  e.  ( -u ( pi 
/  2 ) (,) ( pi  /  2
) ) )
20873, 206, 207syl2anc 661 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( A  +  _i ) ) )  e.  ( -u ( pi 
/  2 ) (,) ( pi  /  2
) ) )
209 tanord 22006 . . . . . . . . 9  |-  ( ( ( Im `  ( log `  ( A  -  _i ) ) )  e.  ( -u ( pi 
/  2 ) (,) ( pi  /  2
) )  /\  (
Im `  ( log `  ( A  +  _i ) ) )  e.  ( -u ( pi 
/  2 ) (,) ( pi  /  2
) ) )  -> 
( ( Im `  ( log `  ( A  -  _i ) ) )  <  ( Im
`  ( log `  ( A  +  _i )
) )  <->  ( tan `  ( Im `  ( log `  ( A  -  _i ) ) ) )  <  ( tan `  (
Im `  ( log `  ( A  +  _i ) ) ) ) ) )
210205, 208, 209syl2anc 661 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( log `  ( A  -  _i ) ) )  < 
( Im `  ( log `  ( A  +  _i ) ) )  <->  ( tan `  ( Im `  ( log `  ( A  -  _i ) ) ) )  <  ( tan `  (
Im `  ( log `  ( A  +  _i ) ) ) ) ) )
211202, 210mpbird 232 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( A  -  _i ) ) )  < 
( Im `  ( log `  ( A  +  _i ) ) ) )
212144addid2d 9582 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
0  +  ( Im
`  ( log `  ( A  +  _i )
) ) )  =  ( Im `  ( log `  ( A  +  _i ) ) ) )
213211, 212breqtrrd 4330 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( A  -  _i ) ) )  < 
( 0  +  ( Im `  ( log `  ( A  +  _i ) ) ) ) )
214140, 143, 174ltsubaddd 9947 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( ( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im
`  ( log `  ( A  +  _i )
) ) )  <  0  <->  ( Im `  ( log `  ( A  -  _i ) ) )  <  ( 0  +  ( Im `  ( log `  ( A  +  _i ) ) ) ) ) )
215213, 214mpbird 232 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im `  ( log `  ( A  +  _i ) ) ) )  <  0 )
216152, 174, 171, 215ltadd1dd 9962 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( ( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im
`  ( log `  ( A  +  _i )
) ) )  +  pi )  <  (
0  +  pi ) )
217110addid2i 9569 . . . 4  |-  ( 0  +  pi )  =  pi
218216, 217syl6breq 4343 . . 3  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( ( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im
`  ( log `  ( A  +  _i )
) ) )  +  pi )  <  pi )
219155rexri 9448 . . . 4  |-  -u pi  e.  RR*
220124rexri 9448 . . . 4  |-  pi  e.  RR*
221 elioo2 11353 . . . 4  |-  ( (
-u pi  e.  RR*  /\  pi  e.  RR* )  ->  ( ( ( ( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im `  ( log `  ( A  +  _i ) ) ) )  +  pi )  e.  ( -u pi (,) pi )  <->  ( ( ( ( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im `  ( log `  ( A  +  _i ) ) ) )  +  pi )  e.  RR  /\  -u pi  <  ( ( ( Im
`  ( log `  ( A  -  _i )
) )  -  (
Im `  ( log `  ( A  +  _i ) ) ) )  +  pi )  /\  ( ( ( Im
`  ( log `  ( A  -  _i )
) )  -  (
Im `  ( log `  ( A  +  _i ) ) ) )  +  pi )  < 
pi ) ) )
222219, 220, 221mp2an 672 . . 3  |-  ( ( ( ( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im
`  ( log `  ( A  +  _i )
) ) )  +  pi )  e.  (
-u pi (,) pi ) 
<->  ( ( ( ( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im `  ( log `  ( A  +  _i ) ) ) )  +  pi )  e.  RR  /\  -u pi  <  ( ( ( Im
`  ( log `  ( A  -  _i )
) )  -  (
Im `  ( log `  ( A  +  _i ) ) ) )  +  pi )  /\  ( ( ( Im
`  ( log `  ( A  -  _i )
) )  -  (
Im `  ( log `  ( A  +  _i ) ) ) )  +  pi )  < 
pi ) )
223154, 173, 218, 222syl3anbrc 1172 . 2  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( ( Im `  ( log `  ( A  -  _i ) ) )  -  ( Im
`  ( log `  ( A  +  _i )
) ) )  +  pi )  e.  (
-u pi (,) pi ) )
224151, 223eqeltrd 2517 1  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( ( log `  ( 1  +  ( _i  x.  A
) ) )  -  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) )  e.  (
-u pi (,) pi ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2618   class class class wbr 4304   dom cdm 4852   ` cfv 5430  (class class class)co 6103   CCcc 9292   RRcr 9293   0cc0 9294   1c1 9295   _ici 9296    + caddc 9297    x. cmul 9299   RR*cxr 9429    < clt 9430    <_ cle 9431    - cmin 9607   -ucneg 9608    / cdiv 10005   2c2 10383   (,)cioo 11312   Recre 12598   Imcim 12599   tanctan 13363   picpi 13364   logclog 22018  arctancatan 22271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-inf2 7859  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371  ax-pre-sup 9372  ax-addf 9373  ax-mulf 9374
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-iin 4186  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-se 4692  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-isom 5439  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-of 6332  df-om 6489  df-1st 6589  df-2nd 6590  df-supp 6703  df-recs 6844  df-rdg 6878  df-1o 6932  df-2o 6933  df-oadd 6936  df-er 7113  df-map 7228  df-pm 7229  df-ixp 7276  df-en 7323  df-dom 7324  df-sdom 7325  df-fin 7326  df-fsupp 7633  df-fi 7673  df-sup 7703  df-oi 7736  df-card 8121  df-cda 8349  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-div 10006  df-nn 10335  df-2 10392  df-3 10393  df-4 10394  df-5 10395  df-6 10396  df-7 10397  df-8 10398  df-9 10399  df-10 10400  df-n0 10592  df-z 10659  df-dec 10768  df-uz 10874  df-q 10966  df-rp 11004  df-xneg 11101  df-xadd 11102  df-xmul 11103  df-ioo 11316  df-ioc 11317  df-ico 11318  df-icc 11319  df-fz 11450  df-fzo 11561  df-fl 11654  df-mod 11721  df-seq 11819  df-exp 11878  df-fac 12064  df-bc 12091  df-hash 12116  df-shft 12568  df-cj 12600  df-re 12601  df-im 12602  df-sqr 12736  df-abs 12737  df-limsup 12961  df-clim 12978  df-rlim 12979  df-sum 13176  df-ef 13365  df-sin 13367  df-cos 13368  df-tan 13369  df-pi 13370  df-struct 14188  df-ndx 14189  df-slot 14190  df-base 14191  df-sets 14192  df-ress 14193  df-plusg 14263  df-mulr 14264  df-starv 14265  df-sca 14266  df-vsca 14267  df-ip 14268  df-tset 14269  df-ple 14270  df-ds 14272  df-unif 14273  df-hom 14274  df-cco 14275  df-rest 14373  df-topn 14374  df-0g 14392  df-gsum 14393  df-topgen 14394  df-pt 14395  df-prds 14398  df-xrs 14452  df-qtop 14457  df-imas 14458  df-xps 14460  df-mre 14536  df-mrc 14537  df-acs 14539  df-mnd 15427  df-submnd 15477  df-mulg 15560  df-cntz 15847  df-cmn 16291  df-psmet 17821  df-xmet 17822  df-met 17823  df-bl 17824  df-mopn 17825  df-fbas 17826  df-fg 17827  df-cnfld 17831  df-top 18515  df-bases 18517  df-topon 18518  df-topsp 18519  df-cld 18635  df-ntr 18636  df-cls 18637  df-nei 18714  df-lp 18752  df-perf 18753  df-cn 18843  df-cnp 18844  df-haus 18931  df-tx 19147  df-hmeo 19340  df-fil 19431  df-fm 19523  df-flim 19524  df-flf 19525  df-xms 19907  df-ms 19908  df-tms 19909  df-cncf 20466  df-limc 21353  df-dv 21354  df-log 22020  df-atan 22274
This theorem is referenced by:  atanlogsub  22323  atanbndlem  22332
  Copyright terms: Public domain W3C validator