MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atandm2 Structured version   Visualization version   GIF version

Theorem atandm2 24404
Description: This form of atandm 24403 is a bit more useful for showing that the logarithms in df-atan 24394 are well-defined. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
atandm2 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))

Proof of Theorem atandm2
StepHypRef Expression
1 atandm 24403 . 2 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
2 3anass 1035 . . 3 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0) ↔ (𝐴 ∈ ℂ ∧ ((1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0)))
3 ax-1cn 9873 . . . . . . . . . 10 1 ∈ ℂ
4 ax-icn 9874 . . . . . . . . . . 11 i ∈ ℂ
5 mulcl 9899 . . . . . . . . . . 11 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
64, 5mpan 702 . . . . . . . . . 10 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
7 subeq0 10186 . . . . . . . . . 10 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → ((1 − (i · 𝐴)) = 0 ↔ 1 = (i · 𝐴)))
83, 6, 7sylancr 694 . . . . . . . . 9 (𝐴 ∈ ℂ → ((1 − (i · 𝐴)) = 0 ↔ 1 = (i · 𝐴)))
94, 4mulneg2i 10356 . . . . . . . . . . . 12 (i · -i) = -(i · i)
10 ixi 10535 . . . . . . . . . . . . 13 (i · i) = -1
1110negeqi 10153 . . . . . . . . . . . 12 -(i · i) = --1
12 negneg1e1 11005 . . . . . . . . . . . 12 --1 = 1
139, 11, 123eqtri 2636 . . . . . . . . . . 11 (i · -i) = 1
1413eqeq2i 2622 . . . . . . . . . 10 ((i · 𝐴) = (i · -i) ↔ (i · 𝐴) = 1)
15 eqcom 2617 . . . . . . . . . 10 ((i · 𝐴) = 1 ↔ 1 = (i · 𝐴))
1614, 15bitri 263 . . . . . . . . 9 ((i · 𝐴) = (i · -i) ↔ 1 = (i · 𝐴))
178, 16syl6bbr 277 . . . . . . . 8 (𝐴 ∈ ℂ → ((1 − (i · 𝐴)) = 0 ↔ (i · 𝐴) = (i · -i)))
18 id 22 . . . . . . . . 9 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
194negcli 10228 . . . . . . . . . 10 -i ∈ ℂ
2019a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → -i ∈ ℂ)
214a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → i ∈ ℂ)
22 ine0 10344 . . . . . . . . . 10 i ≠ 0
2322a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → i ≠ 0)
2418, 20, 21, 23mulcand 10539 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · 𝐴) = (i · -i) ↔ 𝐴 = -i))
2517, 24bitrd 267 . . . . . . 7 (𝐴 ∈ ℂ → ((1 − (i · 𝐴)) = 0 ↔ 𝐴 = -i))
2625necon3bid 2826 . . . . . 6 (𝐴 ∈ ℂ → ((1 − (i · 𝐴)) ≠ 0 ↔ 𝐴 ≠ -i))
27 addcom 10101 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) = ((i · 𝐴) + 1))
283, 6, 27sylancr 694 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (1 + (i · 𝐴)) = ((i · 𝐴) + 1))
29 subneg 10209 . . . . . . . . . . . . 13 (((i · 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · 𝐴) − -1) = ((i · 𝐴) + 1))
306, 3, 29sylancl 693 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((i · 𝐴) − -1) = ((i · 𝐴) + 1))
3128, 30eqtr4d 2647 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (1 + (i · 𝐴)) = ((i · 𝐴) − -1))
3231eqeq1d 2612 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) = 0 ↔ ((i · 𝐴) − -1) = 0))
333negcli 10228 . . . . . . . . . . 11 -1 ∈ ℂ
34 subeq0 10186 . . . . . . . . . . 11 (((i · 𝐴) ∈ ℂ ∧ -1 ∈ ℂ) → (((i · 𝐴) − -1) = 0 ↔ (i · 𝐴) = -1))
356, 33, 34sylancl 693 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((i · 𝐴) − -1) = 0 ↔ (i · 𝐴) = -1))
3632, 35bitrd 267 . . . . . . . . 9 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) = 0 ↔ (i · 𝐴) = -1))
3710eqeq2i 2622 . . . . . . . . 9 ((i · 𝐴) = (i · i) ↔ (i · 𝐴) = -1)
3836, 37syl6bbr 277 . . . . . . . 8 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) = 0 ↔ (i · 𝐴) = (i · i)))
3918, 21, 21, 23mulcand 10539 . . . . . . . 8 (𝐴 ∈ ℂ → ((i · 𝐴) = (i · i) ↔ 𝐴 = i))
4038, 39bitrd 267 . . . . . . 7 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) = 0 ↔ 𝐴 = i))
4140necon3bid 2826 . . . . . 6 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) ≠ 0 ↔ 𝐴 ≠ i))
4226, 41anbi12d 743 . . . . 5 (𝐴 ∈ ℂ → (((1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0) ↔ (𝐴 ≠ -i ∧ 𝐴 ≠ i)))
4342pm5.32i 667 . . . 4 ((𝐴 ∈ ℂ ∧ ((1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0)) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i)))
44 3anass 1035 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i)))
4543, 44bitr4i 266 . . 3 ((𝐴 ∈ ℂ ∧ ((1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0)) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
462, 45bitri 263 . 2 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
471, 46bitr4i 266 1 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  dom cdm 5038  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816  ici 9817   + caddc 9818   · cmul 9820  cmin 10145  -cneg 10146  arctancatan 24391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-atan 24394
This theorem is referenced by:  atanf  24407  atanneg  24434  atancj  24437  efiatan  24439  atanlogaddlem  24440  atanlogadd  24441  atanlogsublem  24442  atanlogsub  24443  efiatan2  24444  2efiatan  24445  atantan  24450  atanbndlem  24452  dvatan  24462  atantayl  24464
  Copyright terms: Public domain W3C validator