Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfvn Structured version   Visualization version   GIF version

Theorem signstfvn 29972
Description: Zero-skipping sign in a word compared to a shorter word. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(#‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(#‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstfvn ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(#‘𝐹)) = (((𝑇𝐹)‘((#‘𝐹) − 1)) (sgn‘𝐾)))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝐾,𝑖,𝑛   𝑓,𝑊,𝑖,𝑛
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝐾(𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstfvn
StepHypRef Expression
1 signsv.p . . . . 5 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
2 signsv.w . . . . 5 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
31, 2signswbase 29957 . . . 4 {-1, 0, 1} = (Base‘𝑊)
41, 2signswmnd 29960 . . . . 5 𝑊 ∈ Mnd
54a1i 11 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → 𝑊 ∈ Mnd)
6 eldifi 3694 . . . . . . . . 9 (𝐹 ∈ (Word ℝ ∖ {∅}) → 𝐹 ∈ Word ℝ)
7 lencl 13179 . . . . . . . . 9 (𝐹 ∈ Word ℝ → (#‘𝐹) ∈ ℕ0)
86, 7syl 17 . . . . . . . 8 (𝐹 ∈ (Word ℝ ∖ {∅}) → (#‘𝐹) ∈ ℕ0)
9 eldifsn 4260 . . . . . . . . 9 (𝐹 ∈ (Word ℝ ∖ {∅}) ↔ (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅))
10 hasheq0 13015 . . . . . . . . . . 11 (𝐹 ∈ Word ℝ → ((#‘𝐹) = 0 ↔ 𝐹 = ∅))
1110necon3bid 2826 . . . . . . . . . 10 (𝐹 ∈ Word ℝ → ((#‘𝐹) ≠ 0 ↔ 𝐹 ≠ ∅))
1211biimpar 501 . . . . . . . . 9 ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → (#‘𝐹) ≠ 0)
139, 12sylbi 206 . . . . . . . 8 (𝐹 ∈ (Word ℝ ∖ {∅}) → (#‘𝐹) ≠ 0)
14 elnnne0 11183 . . . . . . . 8 ((#‘𝐹) ∈ ℕ ↔ ((#‘𝐹) ∈ ℕ0 ∧ (#‘𝐹) ≠ 0))
158, 13, 14sylanbrc 695 . . . . . . 7 (𝐹 ∈ (Word ℝ ∖ {∅}) → (#‘𝐹) ∈ ℕ)
1615adantr 480 . . . . . 6 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (#‘𝐹) ∈ ℕ)
17 nnm1nn0 11211 . . . . . 6 ((#‘𝐹) ∈ ℕ → ((#‘𝐹) − 1) ∈ ℕ0)
1816, 17syl 17 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((#‘𝐹) − 1) ∈ ℕ0)
19 nn0uz 11598 . . . . 5 0 = (ℤ‘0)
2018, 19syl6eleq 2698 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((#‘𝐹) − 1) ∈ (ℤ‘0))
21 s1cl 13235 . . . . . . . . . 10 (𝐾 ∈ ℝ → ⟨“𝐾”⟩ ∈ Word ℝ)
22 ccatcl 13212 . . . . . . . . . 10 ((𝐹 ∈ Word ℝ ∧ ⟨“𝐾”⟩ ∈ Word ℝ) → (𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ)
236, 21, 22syl2an 493 . . . . . . . . 9 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ)
2423adantr 480 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((#‘𝐹) − 1))) → (𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ)
25 wrdf 13165 . . . . . . . 8 ((𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ → (𝐹 ++ ⟨“𝐾”⟩):(0..^(#‘(𝐹 ++ ⟨“𝐾”⟩)))⟶ℝ)
2624, 25syl 17 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((#‘𝐹) − 1))) → (𝐹 ++ ⟨“𝐾”⟩):(0..^(#‘(𝐹 ++ ⟨“𝐾”⟩)))⟶ℝ)
278adantr 480 . . . . . . . . . . . 12 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (#‘𝐹) ∈ ℕ0)
2827nn0zd 11356 . . . . . . . . . . 11 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (#‘𝐹) ∈ ℤ)
29 fzoval 12340 . . . . . . . . . . 11 ((#‘𝐹) ∈ ℤ → (0..^(#‘𝐹)) = (0...((#‘𝐹) − 1)))
3028, 29syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (0..^(#‘𝐹)) = (0...((#‘𝐹) − 1)))
31 fzossfz 12357 . . . . . . . . . 10 (0..^(#‘𝐹)) ⊆ (0...(#‘𝐹))
3230, 31syl6eqssr 3619 . . . . . . . . 9 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (0...((#‘𝐹) − 1)) ⊆ (0...(#‘𝐹)))
33 ccatlen 13213 . . . . . . . . . . . . 13 ((𝐹 ∈ Word ℝ ∧ ⟨“𝐾”⟩ ∈ Word ℝ) → (#‘(𝐹 ++ ⟨“𝐾”⟩)) = ((#‘𝐹) + (#‘⟨“𝐾”⟩)))
346, 21, 33syl2an 493 . . . . . . . . . . . 12 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (#‘(𝐹 ++ ⟨“𝐾”⟩)) = ((#‘𝐹) + (#‘⟨“𝐾”⟩)))
35 s1len 13238 . . . . . . . . . . . . 13 (#‘⟨“𝐾”⟩) = 1
3635oveq2i 6560 . . . . . . . . . . . 12 ((#‘𝐹) + (#‘⟨“𝐾”⟩)) = ((#‘𝐹) + 1)
3734, 36syl6eq 2660 . . . . . . . . . . 11 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (#‘(𝐹 ++ ⟨“𝐾”⟩)) = ((#‘𝐹) + 1))
3837oveq2d 6565 . . . . . . . . . 10 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (0..^(#‘(𝐹 ++ ⟨“𝐾”⟩))) = (0..^((#‘𝐹) + 1)))
3928peano2zd 11361 . . . . . . . . . . 11 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((#‘𝐹) + 1) ∈ ℤ)
40 fzoval 12340 . . . . . . . . . . 11 (((#‘𝐹) + 1) ∈ ℤ → (0..^((#‘𝐹) + 1)) = (0...(((#‘𝐹) + 1) − 1)))
4139, 40syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (0..^((#‘𝐹) + 1)) = (0...(((#‘𝐹) + 1) − 1)))
4227nn0cnd 11230 . . . . . . . . . . . 12 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (#‘𝐹) ∈ ℂ)
43 1cnd 9935 . . . . . . . . . . . 12 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → 1 ∈ ℂ)
4442, 43pncand 10272 . . . . . . . . . . 11 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (((#‘𝐹) + 1) − 1) = (#‘𝐹))
4544oveq2d 6565 . . . . . . . . . 10 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (0...(((#‘𝐹) + 1) − 1)) = (0...(#‘𝐹)))
4638, 41, 453eqtrd 2648 . . . . . . . . 9 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (0..^(#‘(𝐹 ++ ⟨“𝐾”⟩))) = (0...(#‘𝐹)))
4732, 46sseqtr4d 3605 . . . . . . . 8 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (0...((#‘𝐹) − 1)) ⊆ (0..^(#‘(𝐹 ++ ⟨“𝐾”⟩))))
4847sselda 3568 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((#‘𝐹) − 1))) → 𝑖 ∈ (0..^(#‘(𝐹 ++ ⟨“𝐾”⟩))))
4926, 48ffvelrnd 6268 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((#‘𝐹) − 1))) → ((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) ∈ ℝ)
5049rexrd 9968 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((#‘𝐹) − 1))) → ((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) ∈ ℝ*)
51 sgncl 29927 . . . . 5 (((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) ∈ ℝ* → (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)) ∈ {-1, 0, 1})
5250, 51syl 17 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((#‘𝐹) − 1))) → (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)) ∈ {-1, 0, 1})
531, 2signswplusg 29958 . . . 4 = (+g𝑊)
54 simpr 476 . . . . . 6 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → 𝐾 ∈ ℝ)
5554rexrd 9968 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → 𝐾 ∈ ℝ*)
56 sgncl 29927 . . . . 5 (𝐾 ∈ ℝ* → (sgn‘𝐾) ∈ {-1, 0, 1})
5755, 56syl 17 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (sgn‘𝐾) ∈ {-1, 0, 1})
58 simpr 476 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑖 = (((#‘𝐹) − 1) + 1)) → 𝑖 = (((#‘𝐹) − 1) + 1))
5942, 43npcand 10275 . . . . . . . . 9 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (((#‘𝐹) − 1) + 1) = (#‘𝐹))
6059adantr 480 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑖 = (((#‘𝐹) − 1) + 1)) → (((#‘𝐹) − 1) + 1) = (#‘𝐹))
6158, 60eqtrd 2644 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑖 = (((#‘𝐹) − 1) + 1)) → 𝑖 = (#‘𝐹))
6261fveq2d 6107 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑖 = (((#‘𝐹) − 1) + 1)) → ((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) = ((𝐹 ++ ⟨“𝐾”⟩)‘(#‘𝐹)))
636adantr 480 . . . . . . . . 9 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → 𝐹 ∈ Word ℝ)
6454, 21syl 17 . . . . . . . . 9 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ⟨“𝐾”⟩ ∈ Word ℝ)
65 c0ex 9913 . . . . . . . . . . . . 13 0 ∈ V
6665snid 4155 . . . . . . . . . . . 12 0 ∈ {0}
67 fzo01 12417 . . . . . . . . . . . 12 (0..^1) = {0}
6866, 67eleqtrri 2687 . . . . . . . . . . 11 0 ∈ (0..^1)
6935oveq2i 6560 . . . . . . . . . . 11 (0..^(#‘⟨“𝐾”⟩)) = (0..^1)
7068, 69eleqtrri 2687 . . . . . . . . . 10 0 ∈ (0..^(#‘⟨“𝐾”⟩))
7170a1i 11 . . . . . . . . 9 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → 0 ∈ (0..^(#‘⟨“𝐾”⟩)))
72 ccatval3 13216 . . . . . . . . 9 ((𝐹 ∈ Word ℝ ∧ ⟨“𝐾”⟩ ∈ Word ℝ ∧ 0 ∈ (0..^(#‘⟨“𝐾”⟩))) → ((𝐹 ++ ⟨“𝐾”⟩)‘(0 + (#‘𝐹))) = (⟨“𝐾”⟩‘0))
7363, 64, 71, 72syl3anc 1318 . . . . . . . 8 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((𝐹 ++ ⟨“𝐾”⟩)‘(0 + (#‘𝐹))) = (⟨“𝐾”⟩‘0))
7442addid2d 10116 . . . . . . . . 9 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (0 + (#‘𝐹)) = (#‘𝐹))
7574fveq2d 6107 . . . . . . . 8 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((𝐹 ++ ⟨“𝐾”⟩)‘(0 + (#‘𝐹))) = ((𝐹 ++ ⟨“𝐾”⟩)‘(#‘𝐹)))
76 s1fv 13243 . . . . . . . . 9 (𝐾 ∈ ℝ → (⟨“𝐾”⟩‘0) = 𝐾)
7754, 76syl 17 . . . . . . . 8 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (⟨“𝐾”⟩‘0) = 𝐾)
7873, 75, 773eqtr3d 2652 . . . . . . 7 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((𝐹 ++ ⟨“𝐾”⟩)‘(#‘𝐹)) = 𝐾)
7978adantr 480 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑖 = (((#‘𝐹) − 1) + 1)) → ((𝐹 ++ ⟨“𝐾”⟩)‘(#‘𝐹)) = 𝐾)
8062, 79eqtrd 2644 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑖 = (((#‘𝐹) − 1) + 1)) → ((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) = 𝐾)
8180fveq2d 6107 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑖 = (((#‘𝐹) − 1) + 1)) → (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)) = (sgn‘𝐾))
823, 5, 20, 52, 53, 57, 81gsumnunsn 29942 . . 3 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝑊 Σg (𝑖 ∈ (0...(((#‘𝐹) − 1) + 1)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))) = ((𝑊 Σg (𝑖 ∈ (0...((#‘𝐹) − 1)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))) (sgn‘𝐾)))
8359oveq2d 6565 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (0...(((#‘𝐹) − 1) + 1)) = (0...(#‘𝐹)))
8483mpteq1d 4666 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝑖 ∈ (0...(((#‘𝐹) − 1) + 1)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖))) = (𝑖 ∈ (0...(#‘𝐹)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖))))
8584oveq2d 6565 . . 3 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝑊 Σg (𝑖 ∈ (0...(((#‘𝐹) − 1) + 1)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))) = (𝑊 Σg (𝑖 ∈ (0...(#‘𝐹)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))))
8663adantr 480 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((#‘𝐹) − 1))) → 𝐹 ∈ Word ℝ)
8764adantr 480 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((#‘𝐹) − 1))) → ⟨“𝐾”⟩ ∈ Word ℝ)
8830eleq2d 2673 . . . . . . . . 9 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝑖 ∈ (0..^(#‘𝐹)) ↔ 𝑖 ∈ (0...((#‘𝐹) − 1))))
8988biimpar 501 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((#‘𝐹) − 1))) → 𝑖 ∈ (0..^(#‘𝐹)))
90 ccatval1 13214 . . . . . . . 8 ((𝐹 ∈ Word ℝ ∧ ⟨“𝐾”⟩ ∈ Word ℝ ∧ 𝑖 ∈ (0..^(#‘𝐹))) → ((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) = (𝐹𝑖))
9186, 87, 89, 90syl3anc 1318 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((#‘𝐹) − 1))) → ((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) = (𝐹𝑖))
9291fveq2d 6107 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) ∧ 𝑖 ∈ (0...((#‘𝐹) − 1))) → (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)) = (sgn‘(𝐹𝑖)))
9392mpteq2dva 4672 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝑖 ∈ (0...((#‘𝐹) − 1)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖))) = (𝑖 ∈ (0...((#‘𝐹) − 1)) ↦ (sgn‘(𝐹𝑖))))
9493oveq2d 6565 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝑊 Σg (𝑖 ∈ (0...((#‘𝐹) − 1)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))) = (𝑊 Σg (𝑖 ∈ (0...((#‘𝐹) − 1)) ↦ (sgn‘(𝐹𝑖)))))
9594oveq1d 6564 . . 3 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((𝑊 Σg (𝑖 ∈ (0...((#‘𝐹) − 1)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))) (sgn‘𝐾)) = ((𝑊 Σg (𝑖 ∈ (0...((#‘𝐹) − 1)) ↦ (sgn‘(𝐹𝑖)))) (sgn‘𝐾)))
9682, 85, 953eqtr3d 2652 . 2 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (𝑊 Σg (𝑖 ∈ (0...(#‘𝐹)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))) = ((𝑊 Σg (𝑖 ∈ (0...((#‘𝐹) − 1)) ↦ (sgn‘(𝐹𝑖)))) (sgn‘𝐾)))
97 eqidd 2611 . . . . . 6 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (#‘𝐹) = (#‘𝐹))
9897olcd 407 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((#‘𝐹) ∈ (0..^(#‘𝐹)) ∨ (#‘𝐹) = (#‘𝐹)))
9927, 19syl6eleq 2698 . . . . . 6 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (#‘𝐹) ∈ (ℤ‘0))
100 fzosplitsni 12444 . . . . . 6 ((#‘𝐹) ∈ (ℤ‘0) → ((#‘𝐹) ∈ (0..^((#‘𝐹) + 1)) ↔ ((#‘𝐹) ∈ (0..^(#‘𝐹)) ∨ (#‘𝐹) = (#‘𝐹))))
10199, 100syl 17 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((#‘𝐹) ∈ (0..^((#‘𝐹) + 1)) ↔ ((#‘𝐹) ∈ (0..^(#‘𝐹)) ∨ (#‘𝐹) = (#‘𝐹))))
10298, 101mpbird 246 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (#‘𝐹) ∈ (0..^((#‘𝐹) + 1)))
103102, 38eleqtrrd 2691 . . 3 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (#‘𝐹) ∈ (0..^(#‘(𝐹 ++ ⟨“𝐾”⟩))))
104 signsv.t . . . 4 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(#‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
105 signsv.v . . . 4 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(#‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
1061, 2, 104, 105signstfval 29967 . . 3 (((𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ ∧ (#‘𝐹) ∈ (0..^(#‘(𝐹 ++ ⟨“𝐾”⟩)))) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(#‘𝐹)) = (𝑊 Σg (𝑖 ∈ (0...(#‘𝐹)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))))
10723, 103, 106syl2anc 691 . 2 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(#‘𝐹)) = (𝑊 Σg (𝑖 ∈ (0...(#‘𝐹)) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))))
108 fzo0end 12426 . . . . . 6 ((#‘𝐹) ∈ ℕ → ((#‘𝐹) − 1) ∈ (0..^(#‘𝐹)))
10915, 108syl 17 . . . . 5 (𝐹 ∈ (Word ℝ ∖ {∅}) → ((#‘𝐹) − 1) ∈ (0..^(#‘𝐹)))
1101, 2, 104, 105signstfval 29967 . . . . 5 ((𝐹 ∈ Word ℝ ∧ ((#‘𝐹) − 1) ∈ (0..^(#‘𝐹))) → ((𝑇𝐹)‘((#‘𝐹) − 1)) = (𝑊 Σg (𝑖 ∈ (0...((#‘𝐹) − 1)) ↦ (sgn‘(𝐹𝑖)))))
1116, 109, 110syl2anc 691 . . . 4 (𝐹 ∈ (Word ℝ ∖ {∅}) → ((𝑇𝐹)‘((#‘𝐹) − 1)) = (𝑊 Σg (𝑖 ∈ (0...((#‘𝐹) − 1)) ↦ (sgn‘(𝐹𝑖)))))
112111adantr 480 . . 3 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((𝑇𝐹)‘((#‘𝐹) − 1)) = (𝑊 Σg (𝑖 ∈ (0...((#‘𝐹) − 1)) ↦ (sgn‘(𝐹𝑖)))))
113112oveq1d 6564 . 2 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → (((𝑇𝐹)‘((#‘𝐹) − 1)) (sgn‘𝐾)) = ((𝑊 Σg (𝑖 ∈ (0...((#‘𝐹) − 1)) ↦ (sgn‘(𝐹𝑖)))) (sgn‘𝐾)))
11496, 107, 1133eqtr4d 2654 1 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ 𝐾 ∈ ℝ) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘(#‘𝐹)) = (((𝑇𝐹)‘((#‘𝐹) − 1)) (sgn‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  cdif 3537  c0 3874  ifcif 4036  {csn 4125  {cpr 4127  {ctp 4129  cop 4131  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  cr 9814  0cc0 9815  1c1 9816   + caddc 9818  *cxr 9952  cmin 10145  -cneg 10146  cn 10897  0cn0 11169  cz 11254  cuz 11563  ...cfz 12197  ..^cfzo 12334  #chash 12979  Word cword 13146   ++ cconcat 13148  ⟨“cs1 13149  sgncsgn 13674  Σcsu 14264  ndxcnx 15692  Basecbs 15695  +gcplusg 15768   Σg cgsu 15924  Mndcmnd 17117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-sgn 13675  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-0g 15925  df-gsum 15926  df-mgm 17065  df-sgrp 17107  df-mnd 17118
This theorem is referenced by:  signsvtn0  29973  signstfvneq0  29975  signstfveq0  29980  signsvfn  29985
  Copyright terms: Public domain W3C validator