Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfveq0 Structured version   Visualization version   GIF version

Theorem signstfveq0 29980
Description: In case the last letter is zero, the zero skipping sign is the same as the previous letter. (Contributed by Thierry Arnoux, 11-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(#‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(#‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
signstfveq0.1 𝑁 = (#‘𝐹)
Assertion
Ref Expression
signstfveq0 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇𝐹)‘(𝑁 − 1)) = ((𝑇𝐹)‘(𝑁 − 2)))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝐹,𝑎,𝑏,𝑓,𝑖,𝑛   𝑁,𝑎   𝑓,𝑏,𝑖,𝑛,𝑁   𝑇,𝑎,𝑏
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛)   𝐹(𝑗)   𝑁(𝑗)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstfveq0
StepHypRef Expression
1 simpll 786 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝐹 ∈ (Word ℝ ∖ {∅}))
21eldifad 3552 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝐹 ∈ Word ℝ)
3 swrdcl 13271 . . . . 5 (𝐹 ∈ Word ℝ → (𝐹 substr ⟨0, (𝑁 − 1)⟩) ∈ Word ℝ)
42, 3syl 17 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹 substr ⟨0, (𝑁 − 1)⟩) ∈ Word ℝ)
5 1nn0 11185 . . . . . . . . . . 11 1 ∈ ℕ0
65a1i 11 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 1 ∈ ℕ0)
76nn0red 11229 . . . . . . . . . . 11 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 1 ∈ ℝ)
8 2re 10967 . . . . . . . . . . . 12 2 ∈ ℝ
98a1i 11 . . . . . . . . . . 11 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 2 ∈ ℝ)
10 signstfveq0.1 . . . . . . . . . . . . 13 𝑁 = (#‘𝐹)
11 lencl 13179 . . . . . . . . . . . . . 14 (𝐹 ∈ Word ℝ → (#‘𝐹) ∈ ℕ0)
122, 11syl 17 . . . . . . . . . . . . 13 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (#‘𝐹) ∈ ℕ0)
1310, 12syl5eqel 2692 . . . . . . . . . . . 12 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ ℕ0)
1413nn0red 11229 . . . . . . . . . . 11 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ ℝ)
15 1le2 11118 . . . . . . . . . . . 12 1 ≤ 2
1615a1i 11 . . . . . . . . . . 11 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 1 ≤ 2)
17 signsv.p . . . . . . . . . . . . . 14 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
18 signsv.w . . . . . . . . . . . . . 14 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
19 signsv.t . . . . . . . . . . . . . 14 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(#‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
20 signsv.v . . . . . . . . . . . . . 14 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(#‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
2117, 18, 19, 20, 10signstfveq0a 29979 . . . . . . . . . . . . 13 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ (ℤ‘2))
22 eluz2 11569 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
2321, 22sylib 207 . . . . . . . . . . . 12 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
2423simp3d 1068 . . . . . . . . . . 11 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 2 ≤ 𝑁)
257, 9, 14, 16, 24letrd 10073 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 1 ≤ 𝑁)
26 fznn0 12301 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (1 ∈ (0...𝑁) ↔ (1 ∈ ℕ0 ∧ 1 ≤ 𝑁)))
2713, 26syl 17 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (1 ∈ (0...𝑁) ↔ (1 ∈ ℕ0 ∧ 1 ≤ 𝑁)))
286, 25, 27mpbir2and 959 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 1 ∈ (0...𝑁))
29 fznn0sub2 12315 . . . . . . . . 9 (1 ∈ (0...𝑁) → (𝑁 − 1) ∈ (0...𝑁))
3028, 29syl 17 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 1) ∈ (0...𝑁))
3110oveq2i 6560 . . . . . . . 8 (0...𝑁) = (0...(#‘𝐹))
3230, 31syl6eleq 2698 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 1) ∈ (0...(#‘𝐹)))
33 swrd0len 13274 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ (𝑁 − 1) ∈ (0...(#‘𝐹))) → (#‘(𝐹 substr ⟨0, (𝑁 − 1)⟩)) = (𝑁 − 1))
342, 32, 33syl2anc 691 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (#‘(𝐹 substr ⟨0, (𝑁 − 1)⟩)) = (𝑁 − 1))
35 uz2m1nn 11639 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
3621, 35syl 17 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 1) ∈ ℕ)
3734, 36eqeltrd 2688 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (#‘(𝐹 substr ⟨0, (𝑁 − 1)⟩)) ∈ ℕ)
38 nnne0 10930 . . . . . 6 ((#‘(𝐹 substr ⟨0, (𝑁 − 1)⟩)) ∈ ℕ → (#‘(𝐹 substr ⟨0, (𝑁 − 1)⟩)) ≠ 0)
39 fveq2 6103 . . . . . . . 8 ((𝐹 substr ⟨0, (𝑁 − 1)⟩) = ∅ → (#‘(𝐹 substr ⟨0, (𝑁 − 1)⟩)) = (#‘∅))
40 hash0 13019 . . . . . . . 8 (#‘∅) = 0
4139, 40syl6eq 2660 . . . . . . 7 ((𝐹 substr ⟨0, (𝑁 − 1)⟩) = ∅ → (#‘(𝐹 substr ⟨0, (𝑁 − 1)⟩)) = 0)
4241necon3i 2814 . . . . . 6 ((#‘(𝐹 substr ⟨0, (𝑁 − 1)⟩)) ≠ 0 → (𝐹 substr ⟨0, (𝑁 − 1)⟩) ≠ ∅)
4338, 42syl 17 . . . . 5 ((#‘(𝐹 substr ⟨0, (𝑁 − 1)⟩)) ∈ ℕ → (𝐹 substr ⟨0, (𝑁 − 1)⟩) ≠ ∅)
4437, 43syl 17 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹 substr ⟨0, (𝑁 − 1)⟩) ≠ ∅)
45 eldifsn 4260 . . . 4 ((𝐹 substr ⟨0, (𝑁 − 1)⟩) ∈ (Word ℝ ∖ {∅}) ↔ ((𝐹 substr ⟨0, (𝑁 − 1)⟩) ∈ Word ℝ ∧ (𝐹 substr ⟨0, (𝑁 − 1)⟩) ≠ ∅))
464, 44, 45sylanbrc 695 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹 substr ⟨0, (𝑁 − 1)⟩) ∈ (Word ℝ ∖ {∅}))
47 simpr 476 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹‘(𝑁 − 1)) = 0)
48 0re 9919 . . . 4 0 ∈ ℝ
4947, 48syl6eqel 2696 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹‘(𝑁 − 1)) ∈ ℝ)
5017, 18, 19, 20signstfvn 29972 . . 3 (((𝐹 substr ⟨0, (𝑁 − 1)⟩) ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ∈ ℝ) → ((𝑇‘((𝐹 substr ⟨0, (𝑁 − 1)⟩) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(#‘(𝐹 substr ⟨0, (𝑁 − 1)⟩))) = (((𝑇‘(𝐹 substr ⟨0, (𝑁 − 1)⟩))‘((#‘(𝐹 substr ⟨0, (𝑁 − 1)⟩)) − 1)) (sgn‘(𝐹‘(𝑁 − 1)))))
5146, 49, 50syl2anc 691 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇‘((𝐹 substr ⟨0, (𝑁 − 1)⟩) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(#‘(𝐹 substr ⟨0, (𝑁 − 1)⟩))) = (((𝑇‘(𝐹 substr ⟨0, (𝑁 − 1)⟩))‘((#‘(𝐹 substr ⟨0, (𝑁 − 1)⟩)) − 1)) (sgn‘(𝐹‘(𝑁 − 1)))))
5210oveq1i 6559 . . . . . . . . 9 (𝑁 − 1) = ((#‘𝐹) − 1)
5352opeq2i 4344 . . . . . . . 8 ⟨0, (𝑁 − 1)⟩ = ⟨0, ((#‘𝐹) − 1)⟩
5453oveq2i 6560 . . . . . . 7 (𝐹 substr ⟨0, (𝑁 − 1)⟩) = (𝐹 substr ⟨0, ((#‘𝐹) − 1)⟩)
5554a1i 11 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹 substr ⟨0, (𝑁 − 1)⟩) = (𝐹 substr ⟨0, ((#‘𝐹) − 1)⟩))
56 lsw 13204 . . . . . . . . . 10 (𝐹 ∈ (Word ℝ ∖ {∅}) → ( lastS ‘𝐹) = (𝐹‘((#‘𝐹) − 1)))
5756ad2antrr 758 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ( lastS ‘𝐹) = (𝐹‘((#‘𝐹) − 1)))
5810eqcomi 2619 . . . . . . . . . . 11 (#‘𝐹) = 𝑁
5958oveq1i 6559 . . . . . . . . . 10 ((#‘𝐹) − 1) = (𝑁 − 1)
6059fveq2i 6106 . . . . . . . . 9 (𝐹‘((#‘𝐹) − 1)) = (𝐹‘(𝑁 − 1))
6157, 60syl6eq 2660 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ( lastS ‘𝐹) = (𝐹‘(𝑁 − 1)))
6261s1eqd 13234 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ⟨“( lastS ‘𝐹)”⟩ = ⟨“(𝐹‘(𝑁 − 1))”⟩)
6362eqcomd 2616 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ⟨“(𝐹‘(𝑁 − 1))”⟩ = ⟨“( lastS ‘𝐹)”⟩)
6455, 63oveq12d 6567 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝐹 substr ⟨0, (𝑁 − 1)⟩) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩) = ((𝐹 substr ⟨0, ((#‘𝐹) − 1)⟩) ++ ⟨“( lastS ‘𝐹)”⟩))
65 eldifsn 4260 . . . . . . 7 (𝐹 ∈ (Word ℝ ∖ {∅}) ↔ (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅))
661, 65sylib 207 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅))
67 swrdccatwrd 13320 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → ((𝐹 substr ⟨0, ((#‘𝐹) − 1)⟩) ++ ⟨“( lastS ‘𝐹)”⟩) = 𝐹)
6866, 67syl 17 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝐹 substr ⟨0, ((#‘𝐹) − 1)⟩) ++ ⟨“( lastS ‘𝐹)”⟩) = 𝐹)
6964, 68eqtrd 2644 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝐹 substr ⟨0, (𝑁 − 1)⟩) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩) = 𝐹)
7069fveq2d 6107 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑇‘((𝐹 substr ⟨0, (𝑁 − 1)⟩) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩)) = (𝑇𝐹))
7170, 34fveq12d 6109 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇‘((𝐹 substr ⟨0, (𝑁 − 1)⟩) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(#‘(𝐹 substr ⟨0, (𝑁 − 1)⟩))) = ((𝑇𝐹)‘(𝑁 − 1)))
7213nn0cnd 11230 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ ℂ)
73 1cnd 9935 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 1 ∈ ℂ)
7472, 73, 73subsub4d 10302 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑁 − 1) − 1) = (𝑁 − (1 + 1)))
75 1p1e2 11011 . . . . . . . . . 10 (1 + 1) = 2
7675oveq2i 6560 . . . . . . . . 9 (𝑁 − (1 + 1)) = (𝑁 − 2)
7774, 76syl6eq 2660 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑁 − 1) − 1) = (𝑁 − 2))
78 fzo0end 12426 . . . . . . . . 9 ((𝑁 − 1) ∈ ℕ → ((𝑁 − 1) − 1) ∈ (0..^(𝑁 − 1)))
7936, 78syl 17 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑁 − 1) − 1) ∈ (0..^(𝑁 − 1)))
8077, 79eqeltrrd 2689 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 2) ∈ (0..^(𝑁 − 1)))
8134oveq2d 6565 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (0..^(#‘(𝐹 substr ⟨0, (𝑁 − 1)⟩))) = (0..^(𝑁 − 1)))
8280, 81eleqtrrd 2691 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 2) ∈ (0..^(#‘(𝐹 substr ⟨0, (𝑁 − 1)⟩))))
8317, 18, 19, 20signstfvp 29974 . . . . . 6 (((𝐹 substr ⟨0, (𝑁 − 1)⟩) ∈ Word ℝ ∧ (𝐹‘(𝑁 − 1)) ∈ ℝ ∧ (𝑁 − 2) ∈ (0..^(#‘(𝐹 substr ⟨0, (𝑁 − 1)⟩)))) → ((𝑇‘((𝐹 substr ⟨0, (𝑁 − 1)⟩) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(𝑁 − 2)) = ((𝑇‘(𝐹 substr ⟨0, (𝑁 − 1)⟩))‘(𝑁 − 2)))
844, 49, 82, 83syl3anc 1318 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇‘((𝐹 substr ⟨0, (𝑁 − 1)⟩) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(𝑁 − 2)) = ((𝑇‘(𝐹 substr ⟨0, (𝑁 − 1)⟩))‘(𝑁 − 2)))
8569eqcomd 2616 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝐹 = ((𝐹 substr ⟨0, (𝑁 − 1)⟩) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))
8685fveq2d 6107 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑇𝐹) = (𝑇‘((𝐹 substr ⟨0, (𝑁 − 1)⟩) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩)))
8786fveq1d 6105 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇𝐹)‘(𝑁 − 2)) = ((𝑇‘((𝐹 substr ⟨0, (𝑁 − 1)⟩) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(𝑁 − 2)))
8834oveq1d 6564 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((#‘(𝐹 substr ⟨0, (𝑁 − 1)⟩)) − 1) = ((𝑁 − 1) − 1))
8988, 74eqtrd 2644 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((#‘(𝐹 substr ⟨0, (𝑁 − 1)⟩)) − 1) = (𝑁 − (1 + 1)))
9089, 76syl6eq 2660 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((#‘(𝐹 substr ⟨0, (𝑁 − 1)⟩)) − 1) = (𝑁 − 2))
9190fveq2d 6107 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇‘(𝐹 substr ⟨0, (𝑁 − 1)⟩))‘((#‘(𝐹 substr ⟨0, (𝑁 − 1)⟩)) − 1)) = ((𝑇‘(𝐹 substr ⟨0, (𝑁 − 1)⟩))‘(𝑁 − 2)))
9284, 87, 913eqtr4rd 2655 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇‘(𝐹 substr ⟨0, (𝑁 − 1)⟩))‘((#‘(𝐹 substr ⟨0, (𝑁 − 1)⟩)) − 1)) = ((𝑇𝐹)‘(𝑁 − 2)))
93 fveq2 6103 . . . . . 6 ((𝐹‘(𝑁 − 1)) = 0 → (sgn‘(𝐹‘(𝑁 − 1))) = (sgn‘0))
94 sgn0 13677 . . . . . 6 (sgn‘0) = 0
9593, 94syl6eq 2660 . . . . 5 ((𝐹‘(𝑁 − 1)) = 0 → (sgn‘(𝐹‘(𝑁 − 1))) = 0)
9695adantl 481 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (sgn‘(𝐹‘(𝑁 − 1))) = 0)
9792, 96oveq12d 6567 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (((𝑇‘(𝐹 substr ⟨0, (𝑁 − 1)⟩))‘((#‘(𝐹 substr ⟨0, (𝑁 − 1)⟩)) − 1)) (sgn‘(𝐹‘(𝑁 − 1)))) = (((𝑇𝐹)‘(𝑁 − 2)) 0))
98 uznn0sub 11595 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) ∈ ℕ0)
9921, 98syl 17 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 2) ∈ ℕ0)
100 eluz2nn 11602 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
10121, 100syl 17 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ ℕ)
102 2rp 11713 . . . . . . . . 9 2 ∈ ℝ+
103102a1i 11 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 2 ∈ ℝ+)
10414, 103ltsubrpd 11780 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 2) < 𝑁)
105 elfzo0 12376 . . . . . . 7 ((𝑁 − 2) ∈ (0..^𝑁) ↔ ((𝑁 − 2) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝑁 − 2) < 𝑁))
10699, 101, 104, 105syl3anbrc 1239 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 2) ∈ (0..^𝑁))
10710oveq2i 6560 . . . . . 6 (0..^𝑁) = (0..^(#‘𝐹))
108106, 107syl6eleq 2698 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 2) ∈ (0..^(#‘𝐹)))
10917, 18, 19, 20signstcl 29968 . . . . 5 ((𝐹 ∈ Word ℝ ∧ (𝑁 − 2) ∈ (0..^(#‘𝐹))) → ((𝑇𝐹)‘(𝑁 − 2)) ∈ {-1, 0, 1})
1102, 108, 109syl2anc 691 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇𝐹)‘(𝑁 − 2)) ∈ {-1, 0, 1})
11117, 18signswrid 29961 . . . 4 (((𝑇𝐹)‘(𝑁 − 2)) ∈ {-1, 0, 1} → (((𝑇𝐹)‘(𝑁 − 2)) 0) = ((𝑇𝐹)‘(𝑁 − 2)))
112110, 111syl 17 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (((𝑇𝐹)‘(𝑁 − 2)) 0) = ((𝑇𝐹)‘(𝑁 − 2)))
11397, 112eqtrd 2644 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (((𝑇‘(𝐹 substr ⟨0, (𝑁 − 1)⟩))‘((#‘(𝐹 substr ⟨0, (𝑁 − 1)⟩)) − 1)) (sgn‘(𝐹‘(𝑁 − 1)))) = ((𝑇𝐹)‘(𝑁 − 2)))
11451, 71, 1133eqtr3d 2652 1 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇𝐹)‘(𝑁 − 1)) = ((𝑇𝐹)‘(𝑁 − 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  cdif 3537  c0 3874  ifcif 4036  {csn 4125  {cpr 4127  {ctp 4129  cop 4131   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  cmpt2 6551  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cle 9954  cmin 10145  -cneg 10146  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  +crp 11708  ...cfz 12197  ..^cfzo 12334  #chash 12979  Word cword 13146   lastS clsw 13147   ++ cconcat 13148  ⟨“cs1 13149   substr csubstr 13150  sgncsgn 13674  Σcsu 14264  ndxcnx 15692  Basecbs 15695  +gcplusg 15768   Σg cgsu 15924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158  df-sgn 13675  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-0g 15925  df-gsum 15926  df-mgm 17065  df-sgrp 17107  df-mnd 17118
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator