Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsvvfval Structured version   Visualization version   GIF version

Theorem signsvvfval 29981
Description: The value of 𝑉, which represents the number of times the sign changes in a word. (Contributed by Thierry Arnoux, 7-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(#‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(#‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signsvvfval (𝐹 ∈ Word ℝ → (𝑉𝐹) = Σ𝑗 ∈ (1..^(#‘𝐹))if(((𝑇𝐹)‘𝑗) ≠ ((𝑇𝐹)‘(𝑗 − 1)), 1, 0))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑓,𝑗,𝐹   𝑇,𝑓
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signsvvfval
StepHypRef Expression
1 fveq2 6103 . . . 4 (𝑓 = 𝐹 → (#‘𝑓) = (#‘𝐹))
21oveq2d 6565 . . 3 (𝑓 = 𝐹 → (1..^(#‘𝑓)) = (1..^(#‘𝐹)))
3 fveq2 6103 . . . . . . 7 (𝑓 = 𝐹 → (𝑇𝑓) = (𝑇𝐹))
43fveq1d 6105 . . . . . 6 (𝑓 = 𝐹 → ((𝑇𝑓)‘𝑗) = ((𝑇𝐹)‘𝑗))
53fveq1d 6105 . . . . . 6 (𝑓 = 𝐹 → ((𝑇𝑓)‘(𝑗 − 1)) = ((𝑇𝐹)‘(𝑗 − 1)))
64, 5neeq12d 2843 . . . . 5 (𝑓 = 𝐹 → (((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)) ↔ ((𝑇𝐹)‘𝑗) ≠ ((𝑇𝐹)‘(𝑗 − 1))))
76ifbid 4058 . . . 4 (𝑓 = 𝐹 → if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0) = if(((𝑇𝐹)‘𝑗) ≠ ((𝑇𝐹)‘(𝑗 − 1)), 1, 0))
87adantr 480 . . 3 ((𝑓 = 𝐹𝑗 ∈ (1..^(#‘𝑓))) → if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0) = if(((𝑇𝐹)‘𝑗) ≠ ((𝑇𝐹)‘(𝑗 − 1)), 1, 0))
92, 8sumeq12dv 14284 . 2 (𝑓 = 𝐹 → Σ𝑗 ∈ (1..^(#‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0) = Σ𝑗 ∈ (1..^(#‘𝐹))if(((𝑇𝐹)‘𝑗) ≠ ((𝑇𝐹)‘(𝑗 − 1)), 1, 0))
10 signsv.v . 2 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(#‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
11 sumex 14266 . 2 Σ𝑗 ∈ (1..^(#‘𝐹))if(((𝑇𝐹)‘𝑗) ≠ ((𝑇𝐹)‘(𝑗 − 1)), 1, 0) ∈ V
129, 10, 11fvmpt 6191 1 (𝐹 ∈ Word ℝ → (𝑉𝐹) = Σ𝑗 ∈ (1..^(#‘𝐹))if(((𝑇𝐹)‘𝑗) ≠ ((𝑇𝐹)‘(𝑗 − 1)), 1, 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  wne 2780  ifcif 4036  {cpr 4127  {ctp 4129  cop 4131  cmpt 4643  cfv 5804  (class class class)co 6549  cmpt2 6551  cr 9814  0cc0 9815  1c1 9816  cmin 10145  -cneg 10146  ...cfz 12197  ..^cfzo 12334  #chash 12979  Word cword 13146  sgncsgn 13674  Σcsu 14264  ndxcnx 15692  Basecbs 15695  +gcplusg 15768   Σg cgsu 15924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-seq 12664  df-sum 14265
This theorem is referenced by:  signsvf0  29983  signsvf1  29984  signsvfn  29985
  Copyright terms: Public domain W3C validator