Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfvneq0 Structured version   Visualization version   GIF version

Theorem signstfvneq0 29975
 Description: In case the first letter is not zero, the zero skipping sign is never zero. (Contributed by Thierry Arnoux, 10-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(#‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(#‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstfvneq0 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(#‘𝐹))) → ((𝑇𝐹)‘𝑁) ≠ 0)
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑖,𝑁,𝑛   𝑛,𝑎,𝑇,𝑏
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗)   𝐹(𝑗,𝑎,𝑏)   𝑁(𝑓,𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstfvneq0
Dummy variables 𝑒 𝑘 𝑚 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 786 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(#‘𝐹))) → 𝐹 ∈ (Word ℝ ∖ {∅}))
21eldifad 3552 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(#‘𝐹))) → 𝐹 ∈ Word ℝ)
3 eldifsni 4261 . . . 4 (𝐹 ∈ (Word ℝ ∖ {∅}) → 𝐹 ≠ ∅)
43ad2antrr 758 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(#‘𝐹))) → 𝐹 ≠ ∅)
5 simplr 788 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(#‘𝐹))) → (𝐹‘0) ≠ 0)
64, 5jca 553 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(#‘𝐹))) → (𝐹 ≠ ∅ ∧ (𝐹‘0) ≠ 0))
7 simpr 476 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(#‘𝐹))) → 𝑁 ∈ (0..^(#‘𝐹)))
8 simprr 792 . . 3 ((𝐹 ∈ Word ℝ ∧ ((𝐹 ≠ ∅ ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(#‘𝐹)))) → 𝑁 ∈ (0..^(#‘𝐹)))
9 neeq1 2844 . . . . . . . 8 (𝑔 = ∅ → (𝑔 ≠ ∅ ↔ ∅ ≠ ∅))
10 fveq1 6102 . . . . . . . . 9 (𝑔 = ∅ → (𝑔‘0) = (∅‘0))
1110neeq1d 2841 . . . . . . . 8 (𝑔 = ∅ → ((𝑔‘0) ≠ 0 ↔ (∅‘0) ≠ 0))
129, 11anbi12d 743 . . . . . . 7 (𝑔 = ∅ → ((𝑔 ≠ ∅ ∧ (𝑔‘0) ≠ 0) ↔ (∅ ≠ ∅ ∧ (∅‘0) ≠ 0)))
13 fveq2 6103 . . . . . . . . 9 (𝑔 = ∅ → (#‘𝑔) = (#‘∅))
1413oveq2d 6565 . . . . . . . 8 (𝑔 = ∅ → (0..^(#‘𝑔)) = (0..^(#‘∅)))
15 fveq2 6103 . . . . . . . . . 10 (𝑔 = ∅ → (𝑇𝑔) = (𝑇‘∅))
1615fveq1d 6105 . . . . . . . . 9 (𝑔 = ∅ → ((𝑇𝑔)‘𝑚) = ((𝑇‘∅)‘𝑚))
1716neeq1d 2841 . . . . . . . 8 (𝑔 = ∅ → (((𝑇𝑔)‘𝑚) ≠ 0 ↔ ((𝑇‘∅)‘𝑚) ≠ 0))
1814, 17raleqbidv 3129 . . . . . . 7 (𝑔 = ∅ → (∀𝑚 ∈ (0..^(#‘𝑔))((𝑇𝑔)‘𝑚) ≠ 0 ↔ ∀𝑚 ∈ (0..^(#‘∅))((𝑇‘∅)‘𝑚) ≠ 0))
1912, 18imbi12d 333 . . . . . 6 (𝑔 = ∅ → (((𝑔 ≠ ∅ ∧ (𝑔‘0) ≠ 0) → ∀𝑚 ∈ (0..^(#‘𝑔))((𝑇𝑔)‘𝑚) ≠ 0) ↔ ((∅ ≠ ∅ ∧ (∅‘0) ≠ 0) → ∀𝑚 ∈ (0..^(#‘∅))((𝑇‘∅)‘𝑚) ≠ 0)))
20 neeq1 2844 . . . . . . . 8 (𝑔 = 𝑒 → (𝑔 ≠ ∅ ↔ 𝑒 ≠ ∅))
21 fveq1 6102 . . . . . . . . 9 (𝑔 = 𝑒 → (𝑔‘0) = (𝑒‘0))
2221neeq1d 2841 . . . . . . . 8 (𝑔 = 𝑒 → ((𝑔‘0) ≠ 0 ↔ (𝑒‘0) ≠ 0))
2320, 22anbi12d 743 . . . . . . 7 (𝑔 = 𝑒 → ((𝑔 ≠ ∅ ∧ (𝑔‘0) ≠ 0) ↔ (𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0)))
24 fveq2 6103 . . . . . . . . 9 (𝑔 = 𝑒 → (#‘𝑔) = (#‘𝑒))
2524oveq2d 6565 . . . . . . . 8 (𝑔 = 𝑒 → (0..^(#‘𝑔)) = (0..^(#‘𝑒)))
26 fveq2 6103 . . . . . . . . . 10 (𝑔 = 𝑒 → (𝑇𝑔) = (𝑇𝑒))
2726fveq1d 6105 . . . . . . . . 9 (𝑔 = 𝑒 → ((𝑇𝑔)‘𝑚) = ((𝑇𝑒)‘𝑚))
2827neeq1d 2841 . . . . . . . 8 (𝑔 = 𝑒 → (((𝑇𝑔)‘𝑚) ≠ 0 ↔ ((𝑇𝑒)‘𝑚) ≠ 0))
2925, 28raleqbidv 3129 . . . . . . 7 (𝑔 = 𝑒 → (∀𝑚 ∈ (0..^(#‘𝑔))((𝑇𝑔)‘𝑚) ≠ 0 ↔ ∀𝑚 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑚) ≠ 0))
3023, 29imbi12d 333 . . . . . 6 (𝑔 = 𝑒 → (((𝑔 ≠ ∅ ∧ (𝑔‘0) ≠ 0) → ∀𝑚 ∈ (0..^(#‘𝑔))((𝑇𝑔)‘𝑚) ≠ 0) ↔ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑚 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑚) ≠ 0)))
31 neeq1 2844 . . . . . . . 8 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (𝑔 ≠ ∅ ↔ (𝑒 ++ ⟨“𝑘”⟩) ≠ ∅))
32 fveq1 6102 . . . . . . . . 9 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (𝑔‘0) = ((𝑒 ++ ⟨“𝑘”⟩)‘0))
3332neeq1d 2841 . . . . . . . 8 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → ((𝑔‘0) ≠ 0 ↔ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0))
3431, 33anbi12d 743 . . . . . . 7 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → ((𝑔 ≠ ∅ ∧ (𝑔‘0) ≠ 0) ↔ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)))
35 fveq2 6103 . . . . . . . . 9 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (#‘𝑔) = (#‘(𝑒 ++ ⟨“𝑘”⟩)))
3635oveq2d 6565 . . . . . . . 8 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (0..^(#‘𝑔)) = (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))
37 fveq2 6103 . . . . . . . . . 10 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (𝑇𝑔) = (𝑇‘(𝑒 ++ ⟨“𝑘”⟩)))
3837fveq1d 6105 . . . . . . . . 9 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → ((𝑇𝑔)‘𝑚) = ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘𝑚))
3938neeq1d 2841 . . . . . . . 8 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (((𝑇𝑔)‘𝑚) ≠ 0 ↔ ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘𝑚) ≠ 0))
4036, 39raleqbidv 3129 . . . . . . 7 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (∀𝑚 ∈ (0..^(#‘𝑔))((𝑇𝑔)‘𝑚) ≠ 0 ↔ ∀𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘𝑚) ≠ 0))
4134, 40imbi12d 333 . . . . . 6 (𝑔 = (𝑒 ++ ⟨“𝑘”⟩) → (((𝑔 ≠ ∅ ∧ (𝑔‘0) ≠ 0) → ∀𝑚 ∈ (0..^(#‘𝑔))((𝑇𝑔)‘𝑚) ≠ 0) ↔ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) → ∀𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘𝑚) ≠ 0)))
42 neeq1 2844 . . . . . . . 8 (𝑔 = 𝐹 → (𝑔 ≠ ∅ ↔ 𝐹 ≠ ∅))
43 fveq1 6102 . . . . . . . . 9 (𝑔 = 𝐹 → (𝑔‘0) = (𝐹‘0))
4443neeq1d 2841 . . . . . . . 8 (𝑔 = 𝐹 → ((𝑔‘0) ≠ 0 ↔ (𝐹‘0) ≠ 0))
4542, 44anbi12d 743 . . . . . . 7 (𝑔 = 𝐹 → ((𝑔 ≠ ∅ ∧ (𝑔‘0) ≠ 0) ↔ (𝐹 ≠ ∅ ∧ (𝐹‘0) ≠ 0)))
46 fveq2 6103 . . . . . . . . 9 (𝑔 = 𝐹 → (#‘𝑔) = (#‘𝐹))
4746oveq2d 6565 . . . . . . . 8 (𝑔 = 𝐹 → (0..^(#‘𝑔)) = (0..^(#‘𝐹)))
48 fveq2 6103 . . . . . . . . . 10 (𝑔 = 𝐹 → (𝑇𝑔) = (𝑇𝐹))
4948fveq1d 6105 . . . . . . . . 9 (𝑔 = 𝐹 → ((𝑇𝑔)‘𝑚) = ((𝑇𝐹)‘𝑚))
5049neeq1d 2841 . . . . . . . 8 (𝑔 = 𝐹 → (((𝑇𝑔)‘𝑚) ≠ 0 ↔ ((𝑇𝐹)‘𝑚) ≠ 0))
5147, 50raleqbidv 3129 . . . . . . 7 (𝑔 = 𝐹 → (∀𝑚 ∈ (0..^(#‘𝑔))((𝑇𝑔)‘𝑚) ≠ 0 ↔ ∀𝑚 ∈ (0..^(#‘𝐹))((𝑇𝐹)‘𝑚) ≠ 0))
5245, 51imbi12d 333 . . . . . 6 (𝑔 = 𝐹 → (((𝑔 ≠ ∅ ∧ (𝑔‘0) ≠ 0) → ∀𝑚 ∈ (0..^(#‘𝑔))((𝑇𝑔)‘𝑚) ≠ 0) ↔ ((𝐹 ≠ ∅ ∧ (𝐹‘0) ≠ 0) → ∀𝑚 ∈ (0..^(#‘𝐹))((𝑇𝐹)‘𝑚) ≠ 0)))
53 neirr 2791 . . . . . . . 8 ¬ ∅ ≠ ∅
5453intnanr 952 . . . . . . 7 ¬ (∅ ≠ ∅ ∧ (∅‘0) ≠ 0)
5554pm2.21i 115 . . . . . 6 ((∅ ≠ ∅ ∧ (∅‘0) ≠ 0) → ∀𝑚 ∈ (0..^(#‘∅))((𝑇‘∅)‘𝑚) ≠ 0)
56 fveq2 6103 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝑇𝑒)‘𝑛) = ((𝑇𝑒)‘𝑚))
5756neeq1d 2841 . . . . . . . . . . 11 (𝑛 = 𝑚 → (((𝑇𝑒)‘𝑛) ≠ 0 ↔ ((𝑇𝑒)‘𝑚) ≠ 0))
5857cbvralv 3147 . . . . . . . . . 10 (∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0 ↔ ∀𝑚 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑚) ≠ 0)
5958imbi2i 325 . . . . . . . . 9 (((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0) ↔ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑚 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑚) ≠ 0))
6059anbi2i 726 . . . . . . . 8 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ↔ ((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑚 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑚) ≠ 0)))
61 simplr 788 . . . . . . . . . . . 12 (((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(#‘𝑒))) ∧ 𝑒 = ∅) → 𝑚 ∈ (0..^(#‘𝑒)))
62 noel 3878 . . . . . . . . . . . . . 14 ¬ 𝑚 ∈ ∅
63 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑒 = ∅ → (#‘𝑒) = (#‘∅))
64 hash0 13019 . . . . . . . . . . . . . . . . . 18 (#‘∅) = 0
6563, 64syl6eq 2660 . . . . . . . . . . . . . . . . 17 (𝑒 = ∅ → (#‘𝑒) = 0)
6665oveq2d 6565 . . . . . . . . . . . . . . . 16 (𝑒 = ∅ → (0..^(#‘𝑒)) = (0..^0))
67 fzo0 12361 . . . . . . . . . . . . . . . 16 (0..^0) = ∅
6866, 67syl6eq 2660 . . . . . . . . . . . . . . 15 (𝑒 = ∅ → (0..^(#‘𝑒)) = ∅)
6968eleq2d 2673 . . . . . . . . . . . . . 14 (𝑒 = ∅ → (𝑚 ∈ (0..^(#‘𝑒)) ↔ 𝑚 ∈ ∅))
7062, 69mtbiri 316 . . . . . . . . . . . . 13 (𝑒 = ∅ → ¬ 𝑚 ∈ (0..^(#‘𝑒)))
7170adantl 481 . . . . . . . . . . . 12 (((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(#‘𝑒))) ∧ 𝑒 = ∅) → ¬ 𝑚 ∈ (0..^(#‘𝑒)))
7261, 71pm2.21dd 185 . . . . . . . . . . 11 (((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(#‘𝑒))) ∧ 𝑒 = ∅) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘𝑚) ≠ 0)
73 simp-6l 806 . . . . . . . . . . . . 13 (((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(#‘𝑒))) ∧ 𝑒 ≠ ∅) → 𝑒 ∈ Word ℝ)
74 simp-6r 807 . . . . . . . . . . . . 13 (((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(#‘𝑒))) ∧ 𝑒 ≠ ∅) → 𝑘 ∈ ℝ)
75 simplr 788 . . . . . . . . . . . . 13 (((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(#‘𝑒))) ∧ 𝑒 ≠ ∅) → 𝑚 ∈ (0..^(#‘𝑒)))
76 signsv.p . . . . . . . . . . . . . 14 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
77 signsv.w . . . . . . . . . . . . . 14 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
78 signsv.t . . . . . . . . . . . . . 14 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(#‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
79 signsv.v . . . . . . . . . . . . . 14 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(#‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
8076, 77, 78, 79signstfvp 29974 . . . . . . . . . . . . 13 ((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑚 ∈ (0..^(#‘𝑒))) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘𝑚) = ((𝑇𝑒)‘𝑚))
8173, 74, 75, 80syl3anc 1318 . . . . . . . . . . . 12 (((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(#‘𝑒))) ∧ 𝑒 ≠ ∅) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘𝑚) = ((𝑇𝑒)‘𝑚))
82 simpr 476 . . . . . . . . . . . . . 14 (((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(#‘𝑒))) ∧ 𝑒 ≠ ∅) → 𝑒 ≠ ∅)
83 simplll 794 . . . . . . . . . . . . . . . 16 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))) → (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ))
8483ad2antrr 758 . . . . . . . . . . . . . . 15 (((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(#‘𝑒))) ∧ 𝑒 ≠ ∅) → (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ))
85 simplrr 797 . . . . . . . . . . . . . . . 16 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ (𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))) ∧ 𝑚 ∈ (0..^(#‘𝑒)) ∧ 𝑒 ≠ ∅)) → ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)
86853anassrs 1282 . . . . . . . . . . . . . . 15 (((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(#‘𝑒))) ∧ 𝑒 ≠ ∅) → ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)
87 simpll 786 . . . . . . . . . . . . . . . . . 18 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ 𝑒 ≠ ∅) → 𝑒 ∈ Word ℝ)
88 simplr 788 . . . . . . . . . . . . . . . . . . 19 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ 𝑒 ≠ ∅) → 𝑘 ∈ ℝ)
8988s1cld 13236 . . . . . . . . . . . . . . . . . 18 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ 𝑒 ≠ ∅) → ⟨“𝑘”⟩ ∈ Word ℝ)
90 lennncl 13180 . . . . . . . . . . . . . . . . . . . 20 ((𝑒 ∈ Word ℝ ∧ 𝑒 ≠ ∅) → (#‘𝑒) ∈ ℕ)
9190adantlr 747 . . . . . . . . . . . . . . . . . . 19 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ 𝑒 ≠ ∅) → (#‘𝑒) ∈ ℕ)
92 fzo0end 12426 . . . . . . . . . . . . . . . . . . 19 ((#‘𝑒) ∈ ℕ → ((#‘𝑒) − 1) ∈ (0..^(#‘𝑒)))
93 elfzolt3b 12351 . . . . . . . . . . . . . . . . . . 19 (((#‘𝑒) − 1) ∈ (0..^(#‘𝑒)) → 0 ∈ (0..^(#‘𝑒)))
9491, 92, 933syl 18 . . . . . . . . . . . . . . . . . 18 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ 𝑒 ≠ ∅) → 0 ∈ (0..^(#‘𝑒)))
95 ccatval1 13214 . . . . . . . . . . . . . . . . . 18 ((𝑒 ∈ Word ℝ ∧ ⟨“𝑘”⟩ ∈ Word ℝ ∧ 0 ∈ (0..^(#‘𝑒))) → ((𝑒 ++ ⟨“𝑘”⟩)‘0) = (𝑒‘0))
9687, 89, 94, 95syl3anc 1318 . . . . . . . . . . . . . . . . 17 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ 𝑒 ≠ ∅) → ((𝑒 ++ ⟨“𝑘”⟩)‘0) = (𝑒‘0))
9796neeq1d 2841 . . . . . . . . . . . . . . . 16 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ 𝑒 ≠ ∅) → (((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0 ↔ (𝑒‘0) ≠ 0))
9897biimpa 500 . . . . . . . . . . . . . . 15 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ 𝑒 ≠ ∅) ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) → (𝑒‘0) ≠ 0)
9984, 82, 86, 98syl21anc 1317 . . . . . . . . . . . . . 14 (((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(#‘𝑒))) ∧ 𝑒 ≠ ∅) → (𝑒‘0) ≠ 0)
100 simp-5r 805 . . . . . . . . . . . . . 14 (((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(#‘𝑒))) ∧ 𝑒 ≠ ∅) → ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0))
10182, 99, 100mp2and 711 . . . . . . . . . . . . 13 (((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(#‘𝑒))) ∧ 𝑒 ≠ ∅) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)
10257rspcva 3280 . . . . . . . . . . . . 13 ((𝑚 ∈ (0..^(#‘𝑒)) ∧ ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0) → ((𝑇𝑒)‘𝑚) ≠ 0)
10375, 101, 102syl2anc 691 . . . . . . . . . . . 12 (((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(#‘𝑒))) ∧ 𝑒 ≠ ∅) → ((𝑇𝑒)‘𝑚) ≠ 0)
10481, 103eqnetrd 2849 . . . . . . . . . . 11 (((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(#‘𝑒))) ∧ 𝑒 ≠ ∅) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘𝑚) ≠ 0)
10572, 104pm2.61dane 2869 . . . . . . . . . 10 ((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 ∈ (0..^(#‘𝑒))) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘𝑚) ≠ 0)
106 simpr 476 . . . . . . . . . . . 12 ((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 = (#‘𝑒)) → 𝑚 = (#‘𝑒))
107106fveq2d 6107 . . . . . . . . . . 11 ((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 = (#‘𝑒)) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘𝑚) = ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘(#‘𝑒)))
108 simpr 476 . . . . . . . . . . . . . . 15 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ 𝑒 = ∅) → 𝑒 = ∅)
109 simp-4r 803 . . . . . . . . . . . . . . 15 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ 𝑒 = ∅) → 𝑘 ∈ ℝ)
110 simplrl 796 . . . . . . . . . . . . . . . 16 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ 𝑒 = ∅) → ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0))
111110simprd 478 . . . . . . . . . . . . . . 15 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ 𝑒 = ∅) → ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)
112 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . 22 (𝑒 = ∅ → (𝑒 ++ ⟨“𝑘”⟩) = (∅ ++ ⟨“𝑘”⟩))
113 s1cl 13235 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ ℝ → ⟨“𝑘”⟩ ∈ Word ℝ)
114 ccatlid 13222 . . . . . . . . . . . . . . . . . . . . . . 23 (⟨“𝑘”⟩ ∈ Word ℝ → (∅ ++ ⟨“𝑘”⟩) = ⟨“𝑘”⟩)
115113, 114syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℝ → (∅ ++ ⟨“𝑘”⟩) = ⟨“𝑘”⟩)
116112, 115sylan9eq 2664 . . . . . . . . . . . . . . . . . . . . 21 ((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) → (𝑒 ++ ⟨“𝑘”⟩) = ⟨“𝑘”⟩)
117116fveq2d 6107 . . . . . . . . . . . . . . . . . . . 20 ((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) → (𝑇‘(𝑒 ++ ⟨“𝑘”⟩)) = (𝑇‘⟨“𝑘”⟩))
118117adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) → (𝑇‘(𝑒 ++ ⟨“𝑘”⟩)) = (𝑇‘⟨“𝑘”⟩))
119 simplr 788 . . . . . . . . . . . . . . . . . . . 20 (((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) → 𝑘 ∈ ℝ)
12076, 77, 78, 79signstf0 29971 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℝ → (𝑇‘⟨“𝑘”⟩) = ⟨“(sgn‘𝑘)”⟩)
121119, 120syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) → (𝑇‘⟨“𝑘”⟩) = ⟨“(sgn‘𝑘)”⟩)
122118, 121eqtrd 2644 . . . . . . . . . . . . . . . . . 18 (((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) → (𝑇‘(𝑒 ++ ⟨“𝑘”⟩)) = ⟨“(sgn‘𝑘)”⟩)
12365ad2antrr 758 . . . . . . . . . . . . . . . . . 18 (((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) → (#‘𝑒) = 0)
124122, 123fveq12d 6109 . . . . . . . . . . . . . . . . 17 (((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘(#‘𝑒)) = (⟨“(sgn‘𝑘)”⟩‘0))
125 sgnclre 29928 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℝ → (sgn‘𝑘) ∈ ℝ)
126 s1fv 13243 . . . . . . . . . . . . . . . . . 18 ((sgn‘𝑘) ∈ ℝ → (⟨“(sgn‘𝑘)”⟩‘0) = (sgn‘𝑘))
127119, 125, 1263syl 18 . . . . . . . . . . . . . . . . 17 (((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) → (⟨“(sgn‘𝑘)”⟩‘0) = (sgn‘𝑘))
128124, 127eqtrd 2644 . . . . . . . . . . . . . . . 16 (((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘(#‘𝑒)) = (sgn‘𝑘))
129116fveq1d 6105 . . . . . . . . . . . . . . . . . . . 20 ((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) → ((𝑒 ++ ⟨“𝑘”⟩)‘0) = (⟨“𝑘”⟩‘0))
130 s1fv 13243 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℝ → (⟨“𝑘”⟩‘0) = 𝑘)
131130adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) → (⟨“𝑘”⟩‘0) = 𝑘)
132129, 131eqtrd 2644 . . . . . . . . . . . . . . . . . . 19 ((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) → ((𝑒 ++ ⟨“𝑘”⟩)‘0) = 𝑘)
133132neeq1d 2841 . . . . . . . . . . . . . . . . . 18 ((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) → (((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0 ↔ 𝑘 ≠ 0))
134133biimpa 500 . . . . . . . . . . . . . . . . 17 (((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) → 𝑘 ≠ 0)
135 rexr 9964 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℝ → 𝑘 ∈ ℝ*)
136 sgn0bi 29936 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℝ* → ((sgn‘𝑘) = 0 ↔ 𝑘 = 0))
137135, 136syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℝ → ((sgn‘𝑘) = 0 ↔ 𝑘 = 0))
138137necon3bid 2826 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℝ → ((sgn‘𝑘) ≠ 0 ↔ 𝑘 ≠ 0))
139138biimpar 501 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℝ ∧ 𝑘 ≠ 0) → (sgn‘𝑘) ≠ 0)
140119, 134, 139syl2anc 691 . . . . . . . . . . . . . . . 16 (((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) → (sgn‘𝑘) ≠ 0)
141128, 140eqnetrd 2849 . . . . . . . . . . . . . . 15 (((𝑒 = ∅ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘(#‘𝑒)) ≠ 0)
142108, 109, 111, 141syl21anc 1317 . . . . . . . . . . . . . 14 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ 𝑒 = ∅) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘(#‘𝑒)) ≠ 0)
143 simplll 794 . . . . . . . . . . . . . . . . . 18 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → 𝑒 ∈ Word ℝ)
144 simpr 476 . . . . . . . . . . . . . . . . . . 19 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → ¬ 𝑒 = ∅)
145 velsn 4141 . . . . . . . . . . . . . . . . . . 19 (𝑒 ∈ {∅} ↔ 𝑒 = ∅)
146144, 145sylnibr 318 . . . . . . . . . . . . . . . . . 18 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → ¬ 𝑒 ∈ {∅})
147143, 146eldifd 3551 . . . . . . . . . . . . . . . . 17 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → 𝑒 ∈ (Word ℝ ∖ {∅}))
148 simpllr 795 . . . . . . . . . . . . . . . . 17 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → 𝑘 ∈ ℝ)
14976, 77, 78, 79signstfvn 29972 . . . . . . . . . . . . . . . . 17 ((𝑒 ∈ (Word ℝ ∖ {∅}) ∧ 𝑘 ∈ ℝ) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘(#‘𝑒)) = (((𝑇𝑒)‘((#‘𝑒) − 1)) (sgn‘𝑘)))
150147, 148, 149syl2anc 691 . . . . . . . . . . . . . . . 16 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘(#‘𝑒)) = (((𝑇𝑒)‘((#‘𝑒) − 1)) (sgn‘𝑘)))
151150adantllr 751 . . . . . . . . . . . . . . 15 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘(#‘𝑒)) = (((𝑇𝑒)‘((#‘𝑒) − 1)) (sgn‘𝑘)))
152144neqned 2789 . . . . . . . . . . . . . . . . . . . 20 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → 𝑒 ≠ ∅)
153143, 152, 90syl2anc 691 . . . . . . . . . . . . . . . . . . 19 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → (#‘𝑒) ∈ ℕ)
154153, 92syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → ((#‘𝑒) − 1) ∈ (0..^(#‘𝑒)))
15576, 77, 78, 79signstcl 29968 . . . . . . . . . . . . . . . . . 18 ((𝑒 ∈ Word ℝ ∧ ((#‘𝑒) − 1) ∈ (0..^(#‘𝑒))) → ((𝑇𝑒)‘((#‘𝑒) − 1)) ∈ {-1, 0, 1})
156143, 154, 155syl2anc 691 . . . . . . . . . . . . . . . . 17 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → ((𝑇𝑒)‘((#‘𝑒) − 1)) ∈ {-1, 0, 1})
157156adantllr 751 . . . . . . . . . . . . . . . 16 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → ((𝑇𝑒)‘((#‘𝑒) − 1)) ∈ {-1, 0, 1})
158148rexrd 9968 . . . . . . . . . . . . . . . . . 18 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → 𝑘 ∈ ℝ*)
159 sgncl 29927 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℝ* → (sgn‘𝑘) ∈ {-1, 0, 1})
160158, 159syl 17 . . . . . . . . . . . . . . . . 17 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → (sgn‘𝑘) ∈ {-1, 0, 1})
161160adantllr 751 . . . . . . . . . . . . . . . 16 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → (sgn‘𝑘) ∈ {-1, 0, 1})
162154adantllr 751 . . . . . . . . . . . . . . . . 17 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → ((#‘𝑒) − 1) ∈ (0..^(#‘𝑒)))
163152adantllr 751 . . . . . . . . . . . . . . . . . 18 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → 𝑒 ≠ ∅)
164 simplll 794 . . . . . . . . . . . . . . . . . . 19 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → (𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ))
165 simplrl 796 . . . . . . . . . . . . . . . . . . . 20 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0))
166165simprd 478 . . . . . . . . . . . . . . . . . . 19 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)
167164, 163, 166, 98syl21anc 1317 . . . . . . . . . . . . . . . . . 18 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → (𝑒‘0) ≠ 0)
168 simpllr 795 . . . . . . . . . . . . . . . . . 18 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0))
169163, 167, 168mp2and 711 . . . . . . . . . . . . . . . . 17 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)
170 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑛 = ((#‘𝑒) − 1) → ((𝑇𝑒)‘𝑛) = ((𝑇𝑒)‘((#‘𝑒) − 1)))
171170neeq1d 2841 . . . . . . . . . . . . . . . . . 18 (𝑛 = ((#‘𝑒) − 1) → (((𝑇𝑒)‘𝑛) ≠ 0 ↔ ((𝑇𝑒)‘((#‘𝑒) − 1)) ≠ 0))
172171rspcva 3280 . . . . . . . . . . . . . . . . 17 ((((#‘𝑒) − 1) ∈ (0..^(#‘𝑒)) ∧ ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0) → ((𝑇𝑒)‘((#‘𝑒) − 1)) ≠ 0)
173162, 169, 172syl2anc 691 . . . . . . . . . . . . . . . 16 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → ((𝑇𝑒)‘((#‘𝑒) − 1)) ≠ 0)
17476, 77signswn0 29963 . . . . . . . . . . . . . . . 16 (((((𝑇𝑒)‘((#‘𝑒) − 1)) ∈ {-1, 0, 1} ∧ (sgn‘𝑘) ∈ {-1, 0, 1}) ∧ ((𝑇𝑒)‘((#‘𝑒) − 1)) ≠ 0) → (((𝑇𝑒)‘((#‘𝑒) − 1)) (sgn‘𝑘)) ≠ 0)
175157, 161, 173, 174syl21anc 1317 . . . . . . . . . . . . . . 15 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → (((𝑇𝑒)‘((#‘𝑒) − 1)) (sgn‘𝑘)) ≠ 0)
176151, 175eqnetrd 2849 . . . . . . . . . . . . . 14 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) ∧ ¬ 𝑒 = ∅) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘(#‘𝑒)) ≠ 0)
177142, 176pm2.61dan 828 . . . . . . . . . . . . 13 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘(#‘𝑒)) ≠ 0)
178177anassrs 678 . . . . . . . . . . . 12 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘(#‘𝑒)) ≠ 0)
179178adantr 480 . . . . . . . . . . 11 ((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 = (#‘𝑒)) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘(#‘𝑒)) ≠ 0)
180107, 179eqnetrd 2849 . . . . . . . . . 10 ((((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))) ∧ 𝑚 = (#‘𝑒)) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘𝑚) ≠ 0)
181 lencl 13179 . . . . . . . . . . . . 13 (𝑒 ∈ Word ℝ → (#‘𝑒) ∈ ℕ0)
182 nn0uz 11598 . . . . . . . . . . . . 13 0 = (ℤ‘0)
183181, 182syl6eleq 2698 . . . . . . . . . . . 12 (𝑒 ∈ Word ℝ → (#‘𝑒) ∈ (ℤ‘0))
184183ad4antr 764 . . . . . . . . . . 11 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))) → (#‘𝑒) ∈ (ℤ‘0))
185 simpr 476 . . . . . . . . . . . 12 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))) → 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))))
186 ccatws1len 13251 . . . . . . . . . . . . . . 15 ((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) → (#‘(𝑒 ++ ⟨“𝑘”⟩)) = ((#‘𝑒) + 1))
187186oveq2d 6565 . . . . . . . . . . . . . 14 ((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) → (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))) = (0..^((#‘𝑒) + 1)))
188187eleq2d 2673 . . . . . . . . . . . . 13 ((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) → (𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩))) ↔ 𝑚 ∈ (0..^((#‘𝑒) + 1))))
189188biimpa 500 . . . . . . . . . . . 12 (((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))) → 𝑚 ∈ (0..^((#‘𝑒) + 1)))
19083, 185, 189syl2anc 691 . . . . . . . . . . 11 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))) → 𝑚 ∈ (0..^((#‘𝑒) + 1)))
191 fzosplitsni 12444 . . . . . . . . . . . 12 ((#‘𝑒) ∈ (ℤ‘0) → (𝑚 ∈ (0..^((#‘𝑒) + 1)) ↔ (𝑚 ∈ (0..^(#‘𝑒)) ∨ 𝑚 = (#‘𝑒))))
192191biimpa 500 . . . . . . . . . . 11 (((#‘𝑒) ∈ (ℤ‘0) ∧ 𝑚 ∈ (0..^((#‘𝑒) + 1))) → (𝑚 ∈ (0..^(#‘𝑒)) ∨ 𝑚 = (#‘𝑒)))
193184, 190, 192syl2anc 691 . . . . . . . . . 10 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))) → (𝑚 ∈ (0..^(#‘𝑒)) ∨ 𝑚 = (#‘𝑒)))
194105, 180, 193mpjaodan 823 . . . . . . . . 9 (((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) ∧ 𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))) → ((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘𝑚) ≠ 0)
195194ralrimiva 2949 . . . . . . . 8 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑛 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑛) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) → ∀𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘𝑚) ≠ 0)
19660, 195sylanbr 489 . . . . . . 7 ((((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) ∧ ((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑚 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑚) ≠ 0)) ∧ ((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0)) → ∀𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘𝑚) ≠ 0)
197196exp31 628 . . . . . 6 ((𝑒 ∈ Word ℝ ∧ 𝑘 ∈ ℝ) → (((𝑒 ≠ ∅ ∧ (𝑒‘0) ≠ 0) → ∀𝑚 ∈ (0..^(#‘𝑒))((𝑇𝑒)‘𝑚) ≠ 0) → (((𝑒 ++ ⟨“𝑘”⟩) ≠ ∅ ∧ ((𝑒 ++ ⟨“𝑘”⟩)‘0) ≠ 0) → ∀𝑚 ∈ (0..^(#‘(𝑒 ++ ⟨“𝑘”⟩)))((𝑇‘(𝑒 ++ ⟨“𝑘”⟩))‘𝑚) ≠ 0)))
19819, 30, 41, 52, 55, 197wrdind 13328 . . . . 5 (𝐹 ∈ Word ℝ → ((𝐹 ≠ ∅ ∧ (𝐹‘0) ≠ 0) → ∀𝑚 ∈ (0..^(#‘𝐹))((𝑇𝐹)‘𝑚) ≠ 0))
199198imp 444 . . . 4 ((𝐹 ∈ Word ℝ ∧ (𝐹 ≠ ∅ ∧ (𝐹‘0) ≠ 0)) → ∀𝑚 ∈ (0..^(#‘𝐹))((𝑇𝐹)‘𝑚) ≠ 0)
200199adantrr 749 . . 3 ((𝐹 ∈ Word ℝ ∧ ((𝐹 ≠ ∅ ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(#‘𝐹)))) → ∀𝑚 ∈ (0..^(#‘𝐹))((𝑇𝐹)‘𝑚) ≠ 0)
201 fveq2 6103 . . . . 5 (𝑚 = 𝑁 → ((𝑇𝐹)‘𝑚) = ((𝑇𝐹)‘𝑁))
202201neeq1d 2841 . . . 4 (𝑚 = 𝑁 → (((𝑇𝐹)‘𝑚) ≠ 0 ↔ ((𝑇𝐹)‘𝑁) ≠ 0))
203202rspcva 3280 . . 3 ((𝑁 ∈ (0..^(#‘𝐹)) ∧ ∀𝑚 ∈ (0..^(#‘𝐹))((𝑇𝐹)‘𝑚) ≠ 0) → ((𝑇𝐹)‘𝑁) ≠ 0)
2048, 200, 203syl2anc 691 . 2 ((𝐹 ∈ Word ℝ ∧ ((𝐹 ≠ ∅ ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(#‘𝐹)))) → ((𝑇𝐹)‘𝑁) ≠ 0)
2052, 6, 7, 204syl12anc 1316 1 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(#‘𝐹))) → ((𝑇𝐹)‘𝑁) ≠ 0)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896   ∖ cdif 3537  ∅c0 3874  ifcif 4036  {csn 4125  {cpr 4127  {ctp 4129  ⟨cop 4131   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818  ℝ*cxr 9952   − cmin 10145  -cneg 10146  ℕcn 10897  ℕ0cn0 11169  ℤ≥cuz 11563  ...cfz 12197  ..^cfzo 12334  #chash 12979  Word cword 13146   ++ cconcat 13148  ⟨“cs1 13149  sgncsgn 13674  Σcsu 14264  ndxcnx 15692  Basecbs 15695  +gcplusg 15768   Σg cgsu 15924 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158  df-sgn 13675  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-0g 15925  df-gsum 15926  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mulg 17364  df-cntz 17573 This theorem is referenced by:  signstfvcl  29976
 Copyright terms: Public domain W3C validator