Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intnanr | Structured version Visualization version GIF version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.) |
Ref | Expression |
---|---|
intnan.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
intnanr | ⊢ ¬ (𝜑 ∧ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnan.1 | . 2 ⊢ ¬ 𝜑 | |
2 | simpl 472 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
3 | 1, 2 | mto 187 | 1 ⊢ ¬ (𝜑 ∧ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 196 df-an 385 |
This theorem is referenced by: falantru 1499 rab0 3909 rab0OLD 3910 0nelxp 5067 co02 5566 xrltnr 11829 pnfnlt 11838 nltmnf 11839 0nelfz1 12231 smu02 15047 0g0 17086 axlowdimlem13 25634 axlowdimlem16 25637 axlowdim 25641 rusgra0edg 26482 signstfvneq0 29975 bcneg1 30875 linedegen 31420 padd02 34116 eldioph4b 36393 iblempty 38857 notatnand 39712 fun2dmnopgexmpl 40329 |
Copyright terms: Public domain | W3C validator |