Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sgn0bi | Structured version Visualization version GIF version |
Description: Zero signum. (Contributed by Thierry Arnoux, 10-Oct-2018.) |
Ref | Expression |
---|---|
sgn0bi | ⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 0 ↔ 𝐴 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 ∈ ℝ* → 𝐴 ∈ ℝ*) | |
2 | eqeq1 2614 | . . 3 ⊢ ((sgn‘𝐴) = 0 → ((sgn‘𝐴) = 0 ↔ 0 = 0)) | |
3 | 2 | bibi1d 332 | . 2 ⊢ ((sgn‘𝐴) = 0 → (((sgn‘𝐴) = 0 ↔ 𝐴 = 0) ↔ (0 = 0 ↔ 𝐴 = 0))) |
4 | eqeq1 2614 | . . 3 ⊢ ((sgn‘𝐴) = 1 → ((sgn‘𝐴) = 0 ↔ 1 = 0)) | |
5 | 4 | bibi1d 332 | . 2 ⊢ ((sgn‘𝐴) = 1 → (((sgn‘𝐴) = 0 ↔ 𝐴 = 0) ↔ (1 = 0 ↔ 𝐴 = 0))) |
6 | eqeq1 2614 | . . 3 ⊢ ((sgn‘𝐴) = -1 → ((sgn‘𝐴) = 0 ↔ -1 = 0)) | |
7 | 6 | bibi1d 332 | . 2 ⊢ ((sgn‘𝐴) = -1 → (((sgn‘𝐴) = 0 ↔ 𝐴 = 0) ↔ (-1 = 0 ↔ 𝐴 = 0))) |
8 | simpr 476 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → 𝐴 = 0) | |
9 | 8 | eqcomd 2616 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → 0 = 𝐴) |
10 | 9 | eqeq1d 2612 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → (0 = 0 ↔ 𝐴 = 0)) |
11 | ax-1ne0 9884 | . . . . 5 ⊢ 1 ≠ 0 | |
12 | 11 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 1 ≠ 0) |
13 | 12 | neneqd 2787 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ¬ 1 = 0) |
14 | simpr 476 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 0 < 𝐴) | |
15 | 14 | gt0ne0d 10471 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 𝐴 ≠ 0) |
16 | 15 | neneqd 2787 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ¬ 𝐴 = 0) |
17 | 13, 16 | 2falsed 365 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (1 = 0 ↔ 𝐴 = 0)) |
18 | 1cnd 9935 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → 1 ∈ ℂ) | |
19 | 11 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → 1 ≠ 0) |
20 | 18, 19 | negne0d 10269 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → -1 ≠ 0) |
21 | 20 | neneqd 2787 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → ¬ -1 = 0) |
22 | simpr 476 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → 𝐴 < 0) | |
23 | 22 | lt0ne0d 10472 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → 𝐴 ≠ 0) |
24 | 23 | neneqd 2787 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → ¬ 𝐴 = 0) |
25 | 21, 24 | 2falsed 365 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (-1 = 0 ↔ 𝐴 = 0)) |
26 | 1, 3, 5, 7, 10, 17, 25 | sgn3da 29930 | 1 ⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 0 ↔ 𝐴 = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 class class class wbr 4583 ‘cfv 5804 0cc0 9815 1c1 9816 ℝ*cxr 9952 < clt 9953 -cneg 10146 sgncsgn 13674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-po 4959 df-so 4960 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-sub 10147 df-neg 10148 df-sgn 13675 |
This theorem is referenced by: signsvtn0 29973 signstfvneq0 29975 |
Copyright terms: Public domain | W3C validator |