Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfvneq0 Structured version   Unicode version

Theorem signstfvneq0 28197
Description: In case the first letter is not zero, the zero skipping sign is never zero. (Contributed by Thierry Arnoux, 10-Oct-2018.)
Hypotheses
Ref Expression
signsv.p  |-  .+^  =  ( a  e.  { -u
1 ,  0 ,  1 } ,  b  e.  { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b ) )
signsv.w  |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. ,  <. ( +g  `  ndx ) , 
.+^  >. }
signsv.t  |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
0..^ ( # `  f
) )  |->  ( W 
gsumg  ( i  e.  ( 0 ... n ) 
|->  (sgn `  ( f `  i ) ) ) ) ) )
signsv.v  |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f
) ) if ( ( ( T `  f ) `  j
)  =/=  ( ( T `  f ) `
 ( j  - 
1 ) ) ,  1 ,  0 ) )
Assertion
Ref Expression
signstfvneq0  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  N  e.  ( 0..^ ( # `  F
) ) )  -> 
( ( T `  F ) `  N
)  =/=  0 )
Distinct variable groups:    a, b,  .+^    f, i, n, F    f, W, i, n    i, N, n    n, a, T, b
Allowed substitution hints:    .+^ ( f, i,
j, n)    T( f,
i, j)    F( j,
a, b)    N( f,
j, a, b)    V( f, i, j, n, a, b)    W( j, a, b)

Proof of Theorem signstfvneq0
Dummy variables  e 
k  m  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 753 . . 3  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  N  e.  ( 0..^ ( # `  F
) ) )  ->  F  e.  (Word  RR  \  { (/) } ) )
21eldifad 3488 . 2  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  N  e.  ( 0..^ ( # `  F
) ) )  ->  F  e. Word  RR )
3 eldifsn 4152 . . . . 5  |-  ( F  e.  (Word  RR  \  { (/) } )  <->  ( F  e. Word  RR  /\  F  =/=  (/) ) )
43simprbi 464 . . . 4  |-  ( F  e.  (Word  RR  \  { (/) } )  ->  F  =/=  (/) )
51, 4syl 16 . . 3  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  N  e.  ( 0..^ ( # `  F
) ) )  ->  F  =/=  (/) )
6 simplr 754 . . 3  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  N  e.  ( 0..^ ( # `  F
) ) )  -> 
( F `  0
)  =/=  0 )
75, 6jca 532 . 2  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  N  e.  ( 0..^ ( # `  F
) ) )  -> 
( F  =/=  (/)  /\  ( F `  0 )  =/=  0 ) )
8 simpr 461 . 2  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  N  e.  ( 0..^ ( # `  F
) ) )  ->  N  e.  ( 0..^ ( # `  F
) ) )
9 simprr 756 . . 3  |-  ( ( F  e. Word  RR  /\  ( ( F  =/=  (/)  /\  ( F ` 
0 )  =/=  0
)  /\  N  e.  ( 0..^ ( # `  F
) ) ) )  ->  N  e.  ( 0..^ ( # `  F
) ) )
10 neeq1 2748 . . . . . . . 8  |-  ( g  =  (/)  ->  ( g  =/=  (/)  <->  (/)  =/=  (/) ) )
11 fveq1 5865 . . . . . . . . 9  |-  ( g  =  (/)  ->  ( g `
 0 )  =  ( (/) `  0 ) )
1211neeq1d 2744 . . . . . . . 8  |-  ( g  =  (/)  ->  ( ( g `  0 )  =/=  0  <->  ( (/) `  0
)  =/=  0 ) )
1310, 12anbi12d 710 . . . . . . 7  |-  ( g  =  (/)  ->  ( ( g  =/=  (/)  /\  (
g `  0 )  =/=  0 )  <->  ( (/)  =/=  (/)  /\  ( (/) `  0 )  =/=  0 ) ) )
14 fveq2 5866 . . . . . . . . 9  |-  ( g  =  (/)  ->  ( # `  g )  =  (
# `  (/) ) )
1514oveq2d 6300 . . . . . . . 8  |-  ( g  =  (/)  ->  ( 0..^ ( # `  g
) )  =  ( 0..^ ( # `  (/) ) ) )
16 fveq2 5866 . . . . . . . . . 10  |-  ( g  =  (/)  ->  ( T `
 g )  =  ( T `  (/) ) )
1716fveq1d 5868 . . . . . . . . 9  |-  ( g  =  (/)  ->  ( ( T `  g ) `
 m )  =  ( ( T `  (/) ) `  m ) )
1817neeq1d 2744 . . . . . . . 8  |-  ( g  =  (/)  ->  ( ( ( T `  g
) `  m )  =/=  0  <->  ( ( T `
 (/) ) `  m
)  =/=  0 ) )
1915, 18raleqbidv 3072 . . . . . . 7  |-  ( g  =  (/)  ->  ( A. m  e.  ( 0..^ ( # `  g
) ) ( ( T `  g ) `
 m )  =/=  0  <->  A. m  e.  ( 0..^ ( # `  (/) ) ) ( ( T `  (/) ) `  m )  =/=  0 ) )
2013, 19imbi12d 320 . . . . . 6  |-  ( g  =  (/)  ->  ( ( ( g  =/=  (/)  /\  (
g `  0 )  =/=  0 )  ->  A. m  e.  ( 0..^ ( # `  g ) ) ( ( T `  g
) `  m )  =/=  0 )  <->  ( ( (/) 
=/=  (/)  /\  ( (/) `  0 )  =/=  0
)  ->  A. m  e.  ( 0..^ ( # `  (/) ) ) ( ( T `  (/) ) `  m )  =/=  0
) ) )
21 neeq1 2748 . . . . . . . 8  |-  ( g  =  e  ->  (
g  =/=  (/)  <->  e  =/=  (/) ) )
22 fveq1 5865 . . . . . . . . 9  |-  ( g  =  e  ->  (
g `  0 )  =  ( e ` 
0 ) )
2322neeq1d 2744 . . . . . . . 8  |-  ( g  =  e  ->  (
( g `  0
)  =/=  0  <->  (
e `  0 )  =/=  0 ) )
2421, 23anbi12d 710 . . . . . . 7  |-  ( g  =  e  ->  (
( g  =/=  (/)  /\  (
g `  0 )  =/=  0 )  <->  ( e  =/=  (/)  /\  ( e `
 0 )  =/=  0 ) ) )
25 fveq2 5866 . . . . . . . . 9  |-  ( g  =  e  ->  ( # `
 g )  =  ( # `  e
) )
2625oveq2d 6300 . . . . . . . 8  |-  ( g  =  e  ->  (
0..^ ( # `  g
) )  =  ( 0..^ ( # `  e
) ) )
27 fveq2 5866 . . . . . . . . . 10  |-  ( g  =  e  ->  ( T `  g )  =  ( T `  e ) )
2827fveq1d 5868 . . . . . . . . 9  |-  ( g  =  e  ->  (
( T `  g
) `  m )  =  ( ( T `
 e ) `  m ) )
2928neeq1d 2744 . . . . . . . 8  |-  ( g  =  e  ->  (
( ( T `  g ) `  m
)  =/=  0  <->  (
( T `  e
) `  m )  =/=  0 ) )
3026, 29raleqbidv 3072 . . . . . . 7  |-  ( g  =  e  ->  ( A. m  e.  (
0..^ ( # `  g
) ) ( ( T `  g ) `
 m )  =/=  0  <->  A. m  e.  ( 0..^ ( # `  e
) ) ( ( T `  e ) `
 m )  =/=  0 ) )
3124, 30imbi12d 320 . . . . . 6  |-  ( g  =  e  ->  (
( ( g  =/=  (/)  /\  ( g ` 
0 )  =/=  0
)  ->  A. m  e.  ( 0..^ ( # `  g ) ) ( ( T `  g
) `  m )  =/=  0 )  <->  ( (
e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. m  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  m )  =/=  0 ) ) )
32 neeq1 2748 . . . . . . . 8  |-  ( g  =  ( e concat  <" k "> )  ->  ( g  =/=  (/)  <->  ( e concat  <" k "> )  =/=  (/) ) )
33 fveq1 5865 . . . . . . . . 9  |-  ( g  =  ( e concat  <" k "> )  ->  ( g `  0
)  =  ( ( e concat  <" k "> ) `  0
) )
3433neeq1d 2744 . . . . . . . 8  |-  ( g  =  ( e concat  <" k "> )  ->  ( ( g ` 
0 )  =/=  0  <->  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )
3532, 34anbi12d 710 . . . . . . 7  |-  ( g  =  ( e concat  <" k "> )  ->  ( ( g  =/=  (/)  /\  ( g ` 
0 )  =/=  0
)  <->  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) ) )
36 fveq2 5866 . . . . . . . . 9  |-  ( g  =  ( e concat  <" k "> )  ->  ( # `  g
)  =  ( # `  ( e concat  <" k "> ) ) )
3736oveq2d 6300 . . . . . . . 8  |-  ( g  =  ( e concat  <" k "> )  ->  ( 0..^ ( # `  g ) )  =  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) )
38 fveq2 5866 . . . . . . . . . 10  |-  ( g  =  ( e concat  <" k "> )  ->  ( T `  g
)  =  ( T `
 ( e concat  <" k "> )
) )
3938fveq1d 5868 . . . . . . . . 9  |-  ( g  =  ( e concat  <" k "> )  ->  ( ( T `  g ) `  m
)  =  ( ( T `  ( e concat  <" k "> ) ) `  m
) )
4039neeq1d 2744 . . . . . . . 8  |-  ( g  =  ( e concat  <" k "> )  ->  ( ( ( T `
 g ) `  m )  =/=  0  <->  ( ( T `  (
e concat  <" k "> ) ) `  m )  =/=  0
) )
4137, 40raleqbidv 3072 . . . . . . 7  |-  ( g  =  ( e concat  <" k "> )  ->  ( A. m  e.  ( 0..^ ( # `  g ) ) ( ( T `  g
) `  m )  =/=  0  <->  A. m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ( ( T `  ( e concat  <" k "> ) ) `  m )  =/=  0
) )
4235, 41imbi12d 320 . . . . . 6  |-  ( g  =  ( e concat  <" k "> )  ->  ( ( ( g  =/=  (/)  /\  ( g `
 0 )  =/=  0 )  ->  A. m  e.  ( 0..^ ( # `  g ) ) ( ( T `  g
) `  m )  =/=  0 )  <->  ( (
( e concat  <" k "> )  =/=  (/)  /\  (
( e concat  <" k "> ) `  0
)  =/=  0 )  ->  A. m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ( ( T `  ( e concat  <" k "> ) ) `  m )  =/=  0
) ) )
43 neeq1 2748 . . . . . . . 8  |-  ( g  =  F  ->  (
g  =/=  (/)  <->  F  =/=  (/) ) )
44 fveq1 5865 . . . . . . . . 9  |-  ( g  =  F  ->  (
g `  0 )  =  ( F ` 
0 ) )
4544neeq1d 2744 . . . . . . . 8  |-  ( g  =  F  ->  (
( g `  0
)  =/=  0  <->  ( F `  0 )  =/=  0 ) )
4643, 45anbi12d 710 . . . . . . 7  |-  ( g  =  F  ->  (
( g  =/=  (/)  /\  (
g `  0 )  =/=  0 )  <->  ( F  =/=  (/)  /\  ( F `
 0 )  =/=  0 ) ) )
47 fveq2 5866 . . . . . . . . 9  |-  ( g  =  F  ->  ( # `
 g )  =  ( # `  F
) )
4847oveq2d 6300 . . . . . . . 8  |-  ( g  =  F  ->  (
0..^ ( # `  g
) )  =  ( 0..^ ( # `  F
) ) )
49 fveq2 5866 . . . . . . . . . 10  |-  ( g  =  F  ->  ( T `  g )  =  ( T `  F ) )
5049fveq1d 5868 . . . . . . . . 9  |-  ( g  =  F  ->  (
( T `  g
) `  m )  =  ( ( T `
 F ) `  m ) )
5150neeq1d 2744 . . . . . . . 8  |-  ( g  =  F  ->  (
( ( T `  g ) `  m
)  =/=  0  <->  (
( T `  F
) `  m )  =/=  0 ) )
5248, 51raleqbidv 3072 . . . . . . 7  |-  ( g  =  F  ->  ( A. m  e.  (
0..^ ( # `  g
) ) ( ( T `  g ) `
 m )  =/=  0  <->  A. m  e.  ( 0..^ ( # `  F
) ) ( ( T `  F ) `
 m )  =/=  0 ) )
5346, 52imbi12d 320 . . . . . 6  |-  ( g  =  F  ->  (
( ( g  =/=  (/)  /\  ( g ` 
0 )  =/=  0
)  ->  A. m  e.  ( 0..^ ( # `  g ) ) ( ( T `  g
) `  m )  =/=  0 )  <->  ( ( F  =/=  (/)  /\  ( F `
 0 )  =/=  0 )  ->  A. m  e.  ( 0..^ ( # `  F ) ) ( ( T `  F
) `  m )  =/=  0 ) ) )
54 neirr 2671 . . . . . . . 8  |-  -.  (/)  =/=  (/)
5554intnanr 913 . . . . . . 7  |-  -.  ( (/) 
=/=  (/)  /\  ( (/) `  0 )  =/=  0
)
5655pm2.21i 131 . . . . . 6  |-  ( (
(/)  =/=  (/)  /\  ( (/) `  0 )  =/=  0 )  ->  A. m  e.  ( 0..^ ( # `  (/) ) ) ( ( T `  (/) ) `  m )  =/=  0
)
57 fveq2 5866 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  (
( T `  e
) `  n )  =  ( ( T `
 e ) `  m ) )
5857neeq1d 2744 . . . . . . . . . . . 12  |-  ( n  =  m  ->  (
( ( T `  e ) `  n
)  =/=  0  <->  (
( T `  e
) `  m )  =/=  0 ) )
5958cbvralv 3088 . . . . . . . . . . 11  |-  ( A. n  e.  ( 0..^ ( # `  e
) ) ( ( T `  e ) `
 n )  =/=  0  <->  A. m  e.  ( 0..^ ( # `  e
) ) ( ( T `  e ) `
 m )  =/=  0 )
6059imbi2i 312 . . . . . . . . . 10  |-  ( ( ( e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 )  <->  ( (
e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. m  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  m )  =/=  0 ) )
6160anbi2i 694 . . . . . . . . 9  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( e  =/=  (/)  /\  ( e `
 0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  <->  ( (
e  e. Word  RR  /\  k  e.  RR )  /\  (
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. m  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  m )  =/=  0 ) ) )
62 simplr 754 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( e  =/=  (/)  /\  ( e `
 0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  /\  m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) )  /\  m  e.  ( 0..^ ( # `  e ) ) )  /\  e  =  (/) )  ->  m  e.  ( 0..^ ( # `  e
) ) )
63 noel 3789 . . . . . . . . . . . . . . 15  |-  -.  m  e.  (/)
64 fveq2 5866 . . . . . . . . . . . . . . . . . . 19  |-  ( e  =  (/)  ->  ( # `  e )  =  (
# `  (/) ) )
65 hash0 12405 . . . . . . . . . . . . . . . . . . 19  |-  ( # `  (/) )  =  0
6664, 65syl6eq 2524 . . . . . . . . . . . . . . . . . 18  |-  ( e  =  (/)  ->  ( # `  e )  =  0 )
6766oveq2d 6300 . . . . . . . . . . . . . . . . 17  |-  ( e  =  (/)  ->  ( 0..^ ( # `  e
) )  =  ( 0..^ 0 ) )
68 fzo0 11817 . . . . . . . . . . . . . . . . 17  |-  ( 0..^ 0 )  =  (/)
6967, 68syl6eq 2524 . . . . . . . . . . . . . . . 16  |-  ( e  =  (/)  ->  ( 0..^ ( # `  e
) )  =  (/) )
7069eleq2d 2537 . . . . . . . . . . . . . . 15  |-  ( e  =  (/)  ->  ( m  e.  ( 0..^ (
# `  e )
)  <->  m  e.  (/) ) )
7163, 70mtbiri 303 . . . . . . . . . . . . . 14  |-  ( e  =  (/)  ->  -.  m  e.  ( 0..^ ( # `  e ) ) )
7271adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( e  =/=  (/)  /\  ( e `
 0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  /\  m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) )  /\  m  e.  ( 0..^ ( # `  e ) ) )  /\  e  =  (/) )  ->  -.  m  e.  ( 0..^ ( # `  e
) ) )
7362, 72pm2.21dd 174 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( e  =/=  (/)  /\  ( e `
 0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  /\  m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) )  /\  m  e.  ( 0..^ ( # `  e ) ) )  /\  e  =  (/) )  ->  ( ( T `
 ( e concat  <" k "> )
) `  m )  =/=  0 )
74 simp-6l 769 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( e  =/=  (/)  /\  ( e `
 0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  /\  m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) )  /\  m  e.  ( 0..^ ( # `  e ) ) )  /\  e  =/=  (/) )  -> 
e  e. Word  RR )
75 simp-6r 770 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( e  =/=  (/)  /\  ( e `
 0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  /\  m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) )  /\  m  e.  ( 0..^ ( # `  e ) ) )  /\  e  =/=  (/) )  -> 
k  e.  RR )
76 simplr 754 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( e  =/=  (/)  /\  ( e `
 0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  /\  m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) )  /\  m  e.  ( 0..^ ( # `  e ) ) )  /\  e  =/=  (/) )  ->  m  e.  ( 0..^ ( # `  e
) ) )
77 signsv.p . . . . . . . . . . . . . . 15  |-  .+^  =  ( a  e.  { -u
1 ,  0 ,  1 } ,  b  e.  { -u 1 ,  0 ,  1 }  |->  if ( b  =  0 ,  a ,  b ) )
78 signsv.w . . . . . . . . . . . . . . 15  |-  W  =  { <. ( Base `  ndx ) ,  { -u 1 ,  0 ,  1 } >. ,  <. ( +g  `  ndx ) , 
.+^  >. }
79 signsv.t . . . . . . . . . . . . . . 15  |-  T  =  ( f  e. Word  RR  |->  ( n  e.  (
0..^ ( # `  f
) )  |->  ( W 
gsumg  ( i  e.  ( 0 ... n ) 
|->  (sgn `  ( f `  i ) ) ) ) ) )
80 signsv.v . . . . . . . . . . . . . . 15  |-  V  =  ( f  e. Word  RR  |->  sum_ j  e.  ( 1..^ ( # `  f
) ) if ( ( ( T `  f ) `  j
)  =/=  ( ( T `  f ) `
 ( j  - 
1 ) ) ,  1 ,  0 ) )
8177, 78, 79, 80signstfvp 28196 . . . . . . . . . . . . . 14  |-  ( ( e  e. Word  RR  /\  k  e.  RR  /\  m  e.  ( 0..^ ( # `  e ) ) )  ->  ( ( T `
 ( e concat  <" k "> )
) `  m )  =  ( ( T `
 e ) `  m ) )
8274, 75, 76, 81syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( e  =/=  (/)  /\  ( e `
 0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  /\  m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) )  /\  m  e.  ( 0..^ ( # `  e ) ) )  /\  e  =/=  (/) )  -> 
( ( T `  ( e concat  <" k "> ) ) `  m )  =  ( ( T `  e
) `  m )
)
83 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( e  =/=  (/)  /\  ( e `
 0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  /\  m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) )  /\  m  e.  ( 0..^ ( # `  e ) ) )  /\  e  =/=  (/) )  -> 
e  =/=  (/) )
84 simplll 757 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  (
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  /\  m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) )  ->  ( e  e. Word  RR  /\  k  e.  RR ) )
8584ad2antrr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( e  =/=  (/)  /\  ( e `
 0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  /\  m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) )  /\  m  e.  ( 0..^ ( # `  e ) ) )  /\  e  =/=  (/) )  -> 
( e  e. Word  RR  /\  k  e.  RR ) )
86 simplrr 760 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  (
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  /\  ( m  e.  ( 0..^ (
# `  ( e concat  <" k "> ) ) )  /\  m  e.  ( 0..^ ( # `  e
) )  /\  e  =/=  (/) ) )  -> 
( ( e concat  <" k "> ) `  0 )  =/=  0 )
87863anassrs 1218 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( e  =/=  (/)  /\  ( e `
 0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  /\  m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) )  /\  m  e.  ( 0..^ ( # `  e ) ) )  /\  e  =/=  (/) )  -> 
( ( e concat  <" k "> ) `  0 )  =/=  0 )
88 simpll 753 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  e  =/=  (/) )  -> 
e  e. Word  RR )
89 simplr 754 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  e  =/=  (/) )  -> 
k  e.  RR )
9089s1cld 12578 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  e  =/=  (/) )  ->  <" k ">  e. Word  RR )
91 lennncl 12529 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( e  e. Word  RR  /\  e  =/=  (/) )  ->  ( # `
 e )  e.  NN )
9288, 91sylancom 667 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  e  =/=  (/) )  -> 
( # `  e )  e.  NN )
93 fzo0end 11872 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
# `  e )  e.  NN  ->  ( ( # `
 e )  - 
1 )  e.  ( 0..^ ( # `  e
) ) )
94 elfzolt3b 11808 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( # `  e
)  -  1 )  e.  ( 0..^ (
# `  e )
)  ->  0  e.  ( 0..^ ( # `  e
) ) )
9592, 93, 943syl 20 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  e  =/=  (/) )  -> 
0  e.  ( 0..^ ( # `  e
) ) )
96 ccatval1 12560 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( e  e. Word  RR  /\  <" k ">  e. Word  RR  /\  0  e.  ( 0..^ ( # `  e ) ) )  ->  ( ( e concat  <" k "> ) `  0 )  =  ( e ` 
0 ) )
9788, 90, 95, 96syl3anc 1228 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  e  =/=  (/) )  -> 
( ( e concat  <" k "> ) `  0 )  =  ( e `  0
) )
9897neeq1d 2744 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  e  =/=  (/) )  -> 
( ( ( e concat  <" k "> ) `  0 )  =/=  0  <->  ( e ` 
0 )  =/=  0
) )
9998biimpa 484 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  e  =/=  (/) )  /\  ( ( e concat  <" k "> ) `  0 )  =/=  0 )  ->  (
e `  0 )  =/=  0 )
10085, 83, 87, 99syl21anc 1227 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( e  =/=  (/)  /\  ( e `
 0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  /\  m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) )  /\  m  e.  ( 0..^ ( # `  e ) ) )  /\  e  =/=  (/) )  -> 
( e `  0
)  =/=  0 )
10183, 100jca 532 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( e  =/=  (/)  /\  ( e `
 0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  /\  m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) )  /\  m  e.  ( 0..^ ( # `  e ) ) )  /\  e  =/=  (/) )  -> 
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 ) )
102 simp-5r 768 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( e  =/=  (/)  /\  ( e `
 0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  /\  m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) )  /\  m  e.  ( 0..^ ( # `  e ) ) )  /\  e  =/=  (/) )  -> 
( ( e  =/=  (/)  /\  ( e ` 
0 )  =/=  0
)  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )
103101, 102mpd 15 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( e  =/=  (/)  /\  ( e `
 0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  /\  m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) )  /\  m  e.  ( 0..^ ( # `  e ) ) )  /\  e  =/=  (/) )  ->  A. n  e.  (
0..^ ( # `  e
) ) ( ( T `  e ) `
 n )  =/=  0 )
10458rspcv 3210 . . . . . . . . . . . . . . 15  |-  ( m  e.  ( 0..^ (
# `  e )
)  ->  ( A. n  e.  ( 0..^ ( # `  e
) ) ( ( T `  e ) `
 n )  =/=  0  ->  ( ( T `  e ) `  m )  =/=  0
) )
105104imp 429 . . . . . . . . . . . . . 14  |-  ( ( m  e.  ( 0..^ ( # `  e
) )  /\  A. n  e.  ( 0..^ ( # `  e
) ) ( ( T `  e ) `
 n )  =/=  0 )  ->  (
( T `  e
) `  m )  =/=  0 )
10676, 103, 105syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( e  =/=  (/)  /\  ( e `
 0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  /\  m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) )  /\  m  e.  ( 0..^ ( # `  e ) ) )  /\  e  =/=  (/) )  -> 
( ( T `  e ) `  m
)  =/=  0 )
10782, 106eqnetrd 2760 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( e  =/=  (/)  /\  ( e `
 0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  /\  m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) )  /\  m  e.  ( 0..^ ( # `  e ) ) )  /\  e  =/=  (/) )  -> 
( ( T `  ( e concat  <" k "> ) ) `  m )  =/=  0
)
108 exmidne 2672 . . . . . . . . . . . . 13  |-  ( e  =  (/)  \/  e  =/=  (/) )
109108a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( e  =/=  (/)  /\  ( e ` 
0 )  =/=  0
)  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  /\  m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) )  /\  m  e.  ( 0..^ ( # `  e ) ) )  ->  ( e  =  (/)  \/  e  =/=  (/) ) )
11073, 107, 109mpjaodan 784 . . . . . . . . . . 11  |-  ( ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( e  =/=  (/)  /\  ( e ` 
0 )  =/=  0
)  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  /\  m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) )  /\  m  e.  ( 0..^ ( # `  e ) ) )  ->  ( ( T `
 ( e concat  <" k "> )
) `  m )  =/=  0 )
111 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( e  =/=  (/)  /\  ( e ` 
0 )  =/=  0
)  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  /\  m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) )  /\  m  =  ( # `  e
) )  ->  m  =  ( # `  e
) )
112111fveq2d 5870 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( e  =/=  (/)  /\  ( e ` 
0 )  =/=  0
)  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  /\  m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) )  /\  m  =  ( # `  e
) )  ->  (
( T `  (
e concat  <" k "> ) ) `  m )  =  ( ( T `  (
e concat  <" k "> ) ) `  ( # `  e ) ) )
113 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  (
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  e  =  (/) )  ->  e  =  (/) )
114 simp-4r 766 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  (
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  e  =  (/) )  ->  k  e.  RR )
115 simplrl 759 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  (
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  e  =  (/) )  ->  (
( e concat  <" k "> )  =/=  (/)  /\  (
( e concat  <" k "> ) `  0
)  =/=  0 ) )
116115simprd 463 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  (
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  e  =  (/) )  ->  (
( e concat  <" k "> ) `  0
)  =/=  0 )
117 oveq1 6291 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( e  =  (/)  ->  ( e concat  <" k "> )  =  ( (/) concat  <" k "> ) )
118 s1cl 12577 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( k  e.  RR  ->  <" k ">  e. Word  RR )
119 ccatlid 12568 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( <" k ">  e. Word  RR  ->  ( (/) concat  <" k "> )  =  <" k "> )
120118, 119syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  RR  ->  ( (/) concat  <" k "> )  =  <" k "> )
121117, 120sylan9eq 2528 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( e  =  (/)  /\  k  e.  RR )  ->  (
e concat  <" k "> )  =  <" k "> )
122121fveq2d 5870 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( e  =  (/)  /\  k  e.  RR )  ->  ( T `  ( e concat  <" k "> ) )  =  ( T `  <" k "> ) )
123122adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( e  =  (/)  /\  k  e.  RR )  /\  ( ( e concat  <" k "> ) `  0 )  =/=  0 )  ->  ( T `  ( e concat  <" k "> ) )  =  ( T `  <" k "> ) )
124 simplr 754 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( e  =  (/)  /\  k  e.  RR )  /\  ( ( e concat  <" k "> ) `  0 )  =/=  0 )  ->  k  e.  RR )
12577, 78, 79, 80signstf0 28193 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  RR  ->  ( T `  <" k "> )  =  <" (sgn `  k ) "> )
126124, 125syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( e  =  (/)  /\  k  e.  RR )  /\  ( ( e concat  <" k "> ) `  0 )  =/=  0 )  ->  ( T `  <" k "> )  =  <" (sgn `  k ) "> )
127123, 126eqtrd 2508 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( e  =  (/)  /\  k  e.  RR )  /\  ( ( e concat  <" k "> ) `  0 )  =/=  0 )  ->  ( T `  ( e concat  <" k "> ) )  =  <" (sgn `  k ) "> )
12866ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( e  =  (/)  /\  k  e.  RR )  /\  ( ( e concat  <" k "> ) `  0 )  =/=  0 )  ->  ( # `
 e )  =  0 )
129127, 128fveq12d 5872 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( e  =  (/)  /\  k  e.  RR )  /\  ( ( e concat  <" k "> ) `  0 )  =/=  0 )  ->  (
( T `  (
e concat  <" k "> ) ) `  ( # `  e ) )  =  ( <" (sgn `  k ) "> `  0 )
)
130 sgnclre 28146 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  RR  ->  (sgn `  k )  e.  RR )
131 s1fv 12582 . . . . . . . . . . . . . . . . . . 19  |-  ( (sgn
`  k )  e.  RR  ->  ( <" (sgn `  k ) "> `  0 )  =  (sgn `  k )
)
132124, 130, 1313syl 20 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( e  =  (/)  /\  k  e.  RR )  /\  ( ( e concat  <" k "> ) `  0 )  =/=  0 )  ->  ( <" (sgn `  k
) "> `  0
)  =  (sgn `  k ) )
133129, 132eqtrd 2508 . . . . . . . . . . . . . . . . 17  |-  ( ( ( e  =  (/)  /\  k  e.  RR )  /\  ( ( e concat  <" k "> ) `  0 )  =/=  0 )  ->  (
( T `  (
e concat  <" k "> ) ) `  ( # `  e ) )  =  (sgn `  k ) )
134121fveq1d 5868 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( e  =  (/)  /\  k  e.  RR )  ->  (
( e concat  <" k "> ) `  0
)  =  ( <" k "> `  0 ) )
135 s1fv 12582 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  RR  ->  ( <" k "> `  0 )  =  k )
136135adantl 466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( e  =  (/)  /\  k  e.  RR )  ->  ( <" k "> `  0 )  =  k )
137134, 136eqtrd 2508 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( e  =  (/)  /\  k  e.  RR )  ->  (
( e concat  <" k "> ) `  0
)  =  k )
138137neeq1d 2744 . . . . . . . . . . . . . . . . . . 19  |-  ( ( e  =  (/)  /\  k  e.  RR )  ->  (
( ( e concat  <" k "> ) `  0 )  =/=  0  <->  k  =/=  0
) )
139138biimpa 484 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( e  =  (/)  /\  k  e.  RR )  /\  ( ( e concat  <" k "> ) `  0 )  =/=  0 )  ->  k  =/=  0 )
140 rexr 9639 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  RR  ->  k  e.  RR* )
141 sgn0bi 28154 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  RR*  ->  ( (sgn
`  k )  =  0  <->  k  =  0 ) )
142140, 141syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  RR  ->  (
(sgn `  k )  =  0  <->  k  = 
0 ) )
143142necon3bid 2725 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  RR  ->  (
(sgn `  k )  =/=  0  <->  k  =/=  0
) )
144143biimpar 485 . . . . . . . . . . . . . . . . . 18  |-  ( ( k  e.  RR  /\  k  =/=  0 )  -> 
(sgn `  k )  =/=  0 )
145124, 139, 144syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( e  =  (/)  /\  k  e.  RR )  /\  ( ( e concat  <" k "> ) `  0 )  =/=  0 )  ->  (sgn `  k )  =/=  0
)
146133, 145eqnetrd 2760 . . . . . . . . . . . . . . . 16  |-  ( ( ( e  =  (/)  /\  k  e.  RR )  /\  ( ( e concat  <" k "> ) `  0 )  =/=  0 )  ->  (
( T `  (
e concat  <" k "> ) ) `  ( # `  e ) )  =/=  0 )
147113, 114, 116, 146syl21anc 1227 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  (
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  e  =  (/) )  ->  (
( T `  (
e concat  <" k "> ) ) `  ( # `  e ) )  =/=  0 )
148 simplll 757 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  (
( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  -.  e  =  (/) )  -> 
e  e. Word  RR )
149 simpr 461 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  (
( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  -.  e  =  (/) )  ->  -.  e  =  (/) )
150 elsn 4041 . . . . . . . . . . . . . . . . . . . 20  |-  ( e  e.  { (/) }  <->  e  =  (/) )
151149, 150sylnibr 305 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  (
( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  -.  e  =  (/) )  ->  -.  e  e.  { (/) } )
152148, 151eldifd 3487 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  (
( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  -.  e  =  (/) )  -> 
e  e.  (Word  RR  \  { (/) } ) )
153 simpllr 758 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  (
( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  -.  e  =  (/) )  -> 
k  e.  RR )
15477, 78, 79, 80signstfvn 28194 . . . . . . . . . . . . . . . . . 18  |-  ( ( e  e.  (Word  RR  \  { (/) } )  /\  k  e.  RR )  ->  ( ( T `  ( e concat  <" k "> ) ) `  ( # `  e ) )  =  ( ( ( T `  e
) `  ( ( # `
 e )  - 
1 ) )  .+^  (sgn `  k ) ) )
155152, 153, 154syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  (
( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  -.  e  =  (/) )  -> 
( ( T `  ( e concat  <" k "> ) ) `  ( # `  e ) )  =  ( ( ( T `  e
) `  ( ( # `
 e )  - 
1 ) )  .+^  (sgn `  k ) ) )
156155adantllr 718 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  (
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  -.  e  =  (/) )  -> 
( ( T `  ( e concat  <" k "> ) ) `  ( # `  e ) )  =  ( ( ( T `  e
) `  ( ( # `
 e )  - 
1 ) )  .+^  (sgn `  k ) ) )
157149neqned 2670 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  (
( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  -.  e  =  (/) )  -> 
e  =/=  (/) )
158148, 157, 91syl2anc 661 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  (
( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  -.  e  =  (/) )  -> 
( # `  e )  e.  NN )
159158, 93syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  (
( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  -.  e  =  (/) )  -> 
( ( # `  e
)  -  1 )  e.  ( 0..^ (
# `  e )
) )
16077, 78, 79, 80signstcl 28190 . . . . . . . . . . . . . . . . . . 19  |-  ( ( e  e. Word  RR  /\  ( ( # `  e
)  -  1 )  e.  ( 0..^ (
# `  e )
) )  ->  (
( T `  e
) `  ( ( # `
 e )  - 
1 ) )  e. 
{ -u 1 ,  0 ,  1 } )
161148, 159, 160syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  (
( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  -.  e  =  (/) )  -> 
( ( T `  e ) `  (
( # `  e )  -  1 ) )  e.  { -u 1 ,  0 ,  1 } )
162161adantllr 718 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  (
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  -.  e  =  (/) )  -> 
( ( T `  e ) `  (
( # `  e )  -  1 ) )  e.  { -u 1 ,  0 ,  1 } )
163153rexrd 9643 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  (
( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  -.  e  =  (/) )  -> 
k  e.  RR* )
164 sgncl 28145 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  RR*  ->  (sgn `  k )  e.  { -u 1 ,  0 ,  1 } )
165163, 164syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  (
( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  -.  e  =  (/) )  -> 
(sgn `  k )  e.  { -u 1 ,  0 ,  1 } )
166165adantllr 718 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  (
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  -.  e  =  (/) )  -> 
(sgn `  k )  e.  { -u 1 ,  0 ,  1 } )
167159adantllr 718 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  (
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  -.  e  =  (/) )  -> 
( ( # `  e
)  -  1 )  e.  ( 0..^ (
# `  e )
) )
168157adantllr 718 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  (
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  -.  e  =  (/) )  -> 
e  =/=  (/) )
169 simplll 757 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  (
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  -.  e  =  (/) )  -> 
( e  e. Word  RR  /\  k  e.  RR ) )
170 simplrl 759 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  (
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  -.  e  =  (/) )  -> 
( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )
171170simprd 463 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  (
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  -.  e  =  (/) )  -> 
( ( e concat  <" k "> ) `  0 )  =/=  0 )
172169, 168, 171, 99syl21anc 1227 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  (
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  -.  e  =  (/) )  -> 
( e `  0
)  =/=  0 )
173168, 172jca 532 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  (
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  -.  e  =  (/) )  -> 
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 ) )
174 simpllr 758 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  (
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  -.  e  =  (/) )  -> 
( ( e  =/=  (/)  /\  ( e ` 
0 )  =/=  0
)  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )
175173, 174mpd 15 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  (
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  -.  e  =  (/) )  ->  A. n  e.  (
0..^ ( # `  e
) ) ( ( T `  e ) `
 n )  =/=  0 )
176 fveq2 5866 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  =  ( ( # `  e )  -  1 )  ->  ( ( T `  e ) `  n )  =  ( ( T `  e
) `  ( ( # `
 e )  - 
1 ) ) )
177176neeq1d 2744 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  ( ( # `  e )  -  1 )  ->  ( (
( T `  e
) `  n )  =/=  0  <->  ( ( T `
 e ) `  ( ( # `  e
)  -  1 ) )  =/=  0 ) )
178177rspcv 3210 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( # `  e
)  -  1 )  e.  ( 0..^ (
# `  e )
)  ->  ( A. n  e.  ( 0..^ ( # `  e
) ) ( ( T `  e ) `
 n )  =/=  0  ->  ( ( T `  e ) `  ( ( # `  e
)  -  1 ) )  =/=  0 ) )
179178imp 429 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( # `  e
)  -  1 )  e.  ( 0..^ (
# `  e )
)  /\  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 )  ->  (
( T `  e
) `  ( ( # `
 e )  - 
1 ) )  =/=  0 )
180167, 175, 179syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  (
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  -.  e  =  (/) )  -> 
( ( T `  e ) `  (
( # `  e )  -  1 ) )  =/=  0 )
18177, 78signswn0 28185 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( T `
 e ) `  ( ( # `  e
)  -  1 ) )  e.  { -u
1 ,  0 ,  1 }  /\  (sgn `  k )  e.  { -u 1 ,  0 ,  1 } )  /\  ( ( T `  e ) `  (
( # `  e )  -  1 ) )  =/=  0 )  -> 
( ( ( T `
 e ) `  ( ( # `  e
)  -  1 ) )  .+^  (sgn `  k
) )  =/=  0
)
182162, 166, 180, 181syl21anc 1227 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  (
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  -.  e  =  (/) )  -> 
( ( ( T `
 e ) `  ( ( # `  e
)  -  1 ) )  .+^  (sgn `  k
) )  =/=  0
)
183156, 182eqnetrd 2760 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  (
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  /\  -.  e  =  (/) )  -> 
( ( T `  ( e concat  <" k "> ) ) `  ( # `  e ) )  =/=  0 )
184 exmidd 416 . . . . . . . . . . . . . . 15  |-  ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( e  =/=  (/)  /\  ( e `
 0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  ->  (
e  =  (/)  \/  -.  e  =  (/) ) )
185147, 183, 184mpjaodan 784 . . . . . . . . . . . . . 14  |-  ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( e  =/=  (/)  /\  ( e `
 0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ) )  ->  (
( T `  (
e concat  <" k "> ) ) `  ( # `  e ) )  =/=  0 )
186185anassrs 648 . . . . . . . . . . . . 13  |-  ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  (
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  /\  m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) )  ->  ( ( T `  ( e concat  <" k "> ) ) `  ( # `
 e ) )  =/=  0 )
187186adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( e  =/=  (/)  /\  ( e ` 
0 )  =/=  0
)  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  /\  m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) )  /\  m  =  ( # `  e
) )  ->  (
( T `  (
e concat  <" k "> ) ) `  ( # `  e ) )  =/=  0 )
188112, 187eqnetrd 2760 . . . . . . . . . . 11  |-  ( ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( e  =/=  (/)  /\  ( e ` 
0 )  =/=  0
)  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  /\  m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) )  /\  m  =  ( # `  e
) )  ->  (
( T `  (
e concat  <" k "> ) ) `  m )  =/=  0
)
189 lencl 12528 . . . . . . . . . . . . . 14  |-  ( e  e. Word  RR  ->  ( # `  e )  e.  NN0 )
190 nn0uz 11116 . . . . . . . . . . . . . 14  |-  NN0  =  ( ZZ>= `  0 )
191189, 190syl6eleq 2565 . . . . . . . . . . . . 13  |-  ( e  e. Word  RR  ->  ( # `  e )  e.  (
ZZ>= `  0 ) )
192191ad4antr 731 . . . . . . . . . . . 12  |-  ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  (
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  /\  m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) )  ->  ( # `  e
)  e.  ( ZZ>= ` 
0 ) )
193 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  (
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  /\  m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) )  ->  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) )
194 ccatlen 12559 . . . . . . . . . . . . . . . . . 18  |-  ( ( e  e. Word  RR  /\  <" k ">  e. Word  RR )  ->  ( # `
 ( e concat  <" k "> )
)  =  ( (
# `  e )  +  ( # `  <" k "> )
) )
195118, 194sylan2 474 . . . . . . . . . . . . . . . . 17  |-  ( ( e  e. Word  RR  /\  k  e.  RR )  ->  ( # `  (
e concat  <" k "> ) )  =  ( ( # `  e
)  +  ( # `  <" k "> ) ) )
196 s1len 12580 . . . . . . . . . . . . . . . . . 18  |-  ( # `  <" k "> )  =  1
197196oveq2i 6295 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  e )  +  ( # `  <" k "> )
)  =  ( (
# `  e )  +  1 )
198195, 197syl6eq 2524 . . . . . . . . . . . . . . . 16  |-  ( ( e  e. Word  RR  /\  k  e.  RR )  ->  ( # `  (
e concat  <" k "> ) )  =  ( ( # `  e
)  +  1 ) )
199198oveq2d 6300 . . . . . . . . . . . . . . 15  |-  ( ( e  e. Word  RR  /\  k  e.  RR )  ->  ( 0..^ ( # `  ( e concat  <" k "> ) ) )  =  ( 0..^ ( ( # `  e
)  +  1 ) ) )
200199eleq2d 2537 . . . . . . . . . . . . . 14  |-  ( ( e  e. Word  RR  /\  k  e.  RR )  ->  ( m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) )  <-> 
m  e.  ( 0..^ ( ( # `  e
)  +  1 ) ) ) )
201200biimpa 484 . . . . . . . . . . . . 13  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) )  ->  m  e.  ( 0..^ ( ( # `  e )  +  1 ) ) )
20284, 193, 201syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  (
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  /\  m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) )  ->  m  e.  ( 0..^ ( ( # `  e )  +  1 ) ) )
203 fzosplitsni 11888 . . . . . . . . . . . . 13  |-  ( (
# `  e )  e.  ( ZZ>= `  0 )  ->  ( m  e.  ( 0..^ ( ( # `  e )  +  1 ) )  <->  ( m  e.  ( 0..^ ( # `  e ) )  \/  m  =  ( # `  e ) ) ) )
204203biimpa 484 . . . . . . . . . . . 12  |-  ( ( ( # `  e
)  e.  ( ZZ>= ` 
0 )  /\  m  e.  ( 0..^ ( (
# `  e )  +  1 ) ) )  ->  ( m  e.  ( 0..^ ( # `  e ) )  \/  m  =  ( # `  e ) ) )
205192, 202, 204syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  (
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  /\  m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) )  ->  ( m  e.  ( 0..^ ( # `  e ) )  \/  m  =  ( # `  e ) ) )
206110, 188, 205mpjaodan 784 . . . . . . . . . 10  |-  ( ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  (
( e  =/=  (/)  /\  (
e `  0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  /\  m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) )  ->  ( ( T `  ( e concat  <" k "> ) ) `  m
)  =/=  0 )
207206ralrimiva 2878 . . . . . . . . 9  |-  ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( e  =/=  (/)  /\  ( e `
 0 )  =/=  0 )  ->  A. n  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  n )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  ->  A. m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) ( ( T `  ( e concat  <" k "> ) ) `  m )  =/=  0
)
20861, 207sylanbr 473 . . . . . . . 8  |-  ( ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( e  =/=  (/)  /\  ( e `
 0 )  =/=  0 )  ->  A. m  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  m )  =/=  0 ) )  /\  ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 ) )  ->  A. m  e.  ( 0..^ ( # `  ( e concat  <" k "> ) ) ) ( ( T `  ( e concat  <" k "> ) ) `  m )  =/=  0
)
209208ex 434 . . . . . . 7  |-  ( ( ( e  e. Word  RR  /\  k  e.  RR )  /\  ( ( e  =/=  (/)  /\  ( e `
 0 )  =/=  0 )  ->  A. m  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  m )  =/=  0 ) )  -> 
( ( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 )  ->  A. m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ( ( T `  ( e concat  <" k "> ) ) `  m )  =/=  0
) )
210209ex 434 . . . . . 6  |-  ( ( e  e. Word  RR  /\  k  e.  RR )  ->  ( ( ( e  =/=  (/)  /\  ( e `
 0 )  =/=  0 )  ->  A. m  e.  ( 0..^ ( # `  e ) ) ( ( T `  e
) `  m )  =/=  0 )  ->  (
( ( e concat  <" k "> )  =/=  (/)  /\  ( ( e concat  <" k "> ) `  0
)  =/=  0 )  ->  A. m  e.  ( 0..^ ( # `  (
e concat  <" k "> ) ) ) ( ( T `  ( e concat  <" k "> ) ) `  m )  =/=  0
) ) )
21120, 31, 42, 53, 56, 210wrdind 12665 . . . . 5  |-  ( F  e. Word  RR  ->  ( ( F  =/=  (/)  /\  ( F `  0 )  =/=  0 )  ->  A. m  e.  ( 0..^ ( # `  F ) ) ( ( T `  F
) `  m )  =/=  0 ) )
212211imp 429 . . . 4  |-  ( ( F  e. Word  RR  /\  ( F  =/=  (/)  /\  ( F `  0 )  =/=  0 ) )  ->  A. m  e.  (
0..^ ( # `  F
) ) ( ( T `  F ) `
 m )  =/=  0 )
213212adantrr 716 . . 3  |-  ( ( F  e. Word  RR  /\  ( ( F  =/=  (/)  /\  ( F ` 
0 )  =/=  0
)  /\  N  e.  ( 0..^ ( # `  F
) ) ) )  ->  A. m  e.  ( 0..^ ( # `  F
) ) ( ( T `  F ) `
 m )  =/=  0 )
214 fveq2 5866 . . . . . 6  |-  ( m  =  N  ->  (
( T `  F
) `  m )  =  ( ( T `
 F ) `  N ) )
215214neeq1d 2744 . . . . 5  |-  ( m  =  N  ->  (
( ( T `  F ) `  m
)  =/=  0  <->  (
( T `  F
) `  N )  =/=  0 ) )
216215rspcv 3210 . . . 4  |-  ( N  e.  ( 0..^ (
# `  F )
)  ->  ( A. m  e.  ( 0..^ ( # `  F
) ) ( ( T `  F ) `
 m )  =/=  0  ->  ( ( T `  F ) `  N )  =/=  0
) )
217216imp 429 . . 3  |-  ( ( N  e.  ( 0..^ ( # `  F
) )  /\  A. m  e.  ( 0..^ ( # `  F
) ) ( ( T `  F ) `
 m )  =/=  0 )  ->  (
( T `  F
) `  N )  =/=  0 )
2189, 213, 217syl2anc 661 . 2  |-  ( ( F  e. Word  RR  /\  ( ( F  =/=  (/)  /\  ( F ` 
0 )  =/=  0
)  /\  N  e.  ( 0..^ ( # `  F
) ) ) )  ->  ( ( T `
 F ) `  N )  =/=  0
)
2192, 7, 8, 218syl12anc 1226 1  |-  ( ( ( F  e.  (Word 
RR  \  { (/) } )  /\  ( F ` 
0 )  =/=  0
)  /\  N  e.  ( 0..^ ( # `  F
) ) )  -> 
( ( T `  F ) `  N
)  =/=  0 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814    \ cdif 3473   (/)c0 3785   ifcif 3939   {csn 4027   {cpr 4029   {ctp 4031   <.cop 4033    |-> cmpt 4505   ` cfv 5588  (class class class)co 6284    |-> cmpt2 6286   RRcr 9491   0cc0 9492   1c1 9493    + caddc 9495   RR*cxr 9627    - cmin 9805   -ucneg 9806   NNcn 10536   NN0cn0 10795   ZZ>=cuz 11082   ...cfz 11672  ..^cfzo 11792   #chash 12373  Word cword 12500   concat cconcat 12502   <"cs1 12503  sgncsgn 12882   sum_csu 13471   ndxcnx 14487   Basecbs 14490   +g cplusg 14555    gsumg cgsu 14696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-oi 7935  df-card 8320  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-nn 10537  df-2 10594  df-n0 10796  df-z 10865  df-uz 11083  df-fz 11673  df-fzo 11793  df-seq 12076  df-hash 12374  df-word 12508  df-concat 12510  df-s1 12511  df-substr 12512  df-sgn 12883  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-plusg 14568  df-0g 14697  df-gsum 14698  df-mnd 15732  df-mulg 15870  df-cntz 16160
This theorem is referenced by:  signstfvcl  28198
  Copyright terms: Public domain W3C validator