MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrdind Structured version   Visualization version   GIF version

Theorem wrdind 13328
Description: Perform induction over the structure of a word. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Hypotheses
Ref Expression
wrdind.1 (𝑥 = ∅ → (𝜑𝜓))
wrdind.2 (𝑥 = 𝑦 → (𝜑𝜒))
wrdind.3 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (𝜑𝜃))
wrdind.4 (𝑥 = 𝐴 → (𝜑𝜏))
wrdind.5 𝜓
wrdind.6 ((𝑦 ∈ Word 𝐵𝑧𝐵) → (𝜒𝜃))
Assertion
Ref Expression
wrdind (𝐴 ∈ Word 𝐵𝜏)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝑧,𝐵   𝜒,𝑥   𝜑,𝑦,𝑧   𝜏,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑦,𝑧)   𝜃(𝑦,𝑧)   𝜏(𝑦,𝑧)   𝐴(𝑦,𝑧)

Proof of Theorem wrdind
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lencl 13179 . . 3 (𝐴 ∈ Word 𝐵 → (#‘𝐴) ∈ ℕ0)
2 eqeq2 2621 . . . . . 6 (𝑛 = 0 → ((#‘𝑥) = 𝑛 ↔ (#‘𝑥) = 0))
32imbi1d 330 . . . . 5 (𝑛 = 0 → (((#‘𝑥) = 𝑛𝜑) ↔ ((#‘𝑥) = 0 → 𝜑)))
43ralbidv 2969 . . . 4 (𝑛 = 0 → (∀𝑥 ∈ Word 𝐵((#‘𝑥) = 𝑛𝜑) ↔ ∀𝑥 ∈ Word 𝐵((#‘𝑥) = 0 → 𝜑)))
5 eqeq2 2621 . . . . . 6 (𝑛 = 𝑚 → ((#‘𝑥) = 𝑛 ↔ (#‘𝑥) = 𝑚))
65imbi1d 330 . . . . 5 (𝑛 = 𝑚 → (((#‘𝑥) = 𝑛𝜑) ↔ ((#‘𝑥) = 𝑚𝜑)))
76ralbidv 2969 . . . 4 (𝑛 = 𝑚 → (∀𝑥 ∈ Word 𝐵((#‘𝑥) = 𝑛𝜑) ↔ ∀𝑥 ∈ Word 𝐵((#‘𝑥) = 𝑚𝜑)))
8 eqeq2 2621 . . . . . 6 (𝑛 = (𝑚 + 1) → ((#‘𝑥) = 𝑛 ↔ (#‘𝑥) = (𝑚 + 1)))
98imbi1d 330 . . . . 5 (𝑛 = (𝑚 + 1) → (((#‘𝑥) = 𝑛𝜑) ↔ ((#‘𝑥) = (𝑚 + 1) → 𝜑)))
109ralbidv 2969 . . . 4 (𝑛 = (𝑚 + 1) → (∀𝑥 ∈ Word 𝐵((#‘𝑥) = 𝑛𝜑) ↔ ∀𝑥 ∈ Word 𝐵((#‘𝑥) = (𝑚 + 1) → 𝜑)))
11 eqeq2 2621 . . . . . 6 (𝑛 = (#‘𝐴) → ((#‘𝑥) = 𝑛 ↔ (#‘𝑥) = (#‘𝐴)))
1211imbi1d 330 . . . . 5 (𝑛 = (#‘𝐴) → (((#‘𝑥) = 𝑛𝜑) ↔ ((#‘𝑥) = (#‘𝐴) → 𝜑)))
1312ralbidv 2969 . . . 4 (𝑛 = (#‘𝐴) → (∀𝑥 ∈ Word 𝐵((#‘𝑥) = 𝑛𝜑) ↔ ∀𝑥 ∈ Word 𝐵((#‘𝑥) = (#‘𝐴) → 𝜑)))
14 hasheq0 13015 . . . . . 6 (𝑥 ∈ Word 𝐵 → ((#‘𝑥) = 0 ↔ 𝑥 = ∅))
15 wrdind.5 . . . . . . 7 𝜓
16 wrdind.1 . . . . . . 7 (𝑥 = ∅ → (𝜑𝜓))
1715, 16mpbiri 247 . . . . . 6 (𝑥 = ∅ → 𝜑)
1814, 17syl6bi 242 . . . . 5 (𝑥 ∈ Word 𝐵 → ((#‘𝑥) = 0 → 𝜑))
1918rgen 2906 . . . 4 𝑥 ∈ Word 𝐵((#‘𝑥) = 0 → 𝜑)
20 fveq2 6103 . . . . . . . 8 (𝑥 = 𝑦 → (#‘𝑥) = (#‘𝑦))
2120eqeq1d 2612 . . . . . . 7 (𝑥 = 𝑦 → ((#‘𝑥) = 𝑚 ↔ (#‘𝑦) = 𝑚))
22 wrdind.2 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜒))
2321, 22imbi12d 333 . . . . . 6 (𝑥 = 𝑦 → (((#‘𝑥) = 𝑚𝜑) ↔ ((#‘𝑦) = 𝑚𝜒)))
2423cbvralv 3147 . . . . 5 (∀𝑥 ∈ Word 𝐵((#‘𝑥) = 𝑚𝜑) ↔ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒))
25 swrdcl 13271 . . . . . . . . . . . 12 (𝑥 ∈ Word 𝐵 → (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ∈ Word 𝐵)
2625ad2antrl 760 . . . . . . . . . . 11 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ∈ Word 𝐵)
27 simplr 788 . . . . . . . . . . 11 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒))
28 simprl 790 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → 𝑥 ∈ Word 𝐵)
29 fzossfz 12357 . . . . . . . . . . . . . 14 (0..^(#‘𝑥)) ⊆ (0...(#‘𝑥))
30 simprr 792 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → (#‘𝑥) = (𝑚 + 1))
31 nn0p1nn 11209 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ)
3231ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → (𝑚 + 1) ∈ ℕ)
3330, 32eqeltrd 2688 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → (#‘𝑥) ∈ ℕ)
34 fzo0end 12426 . . . . . . . . . . . . . . 15 ((#‘𝑥) ∈ ℕ → ((#‘𝑥) − 1) ∈ (0..^(#‘𝑥)))
3533, 34syl 17 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → ((#‘𝑥) − 1) ∈ (0..^(#‘𝑥)))
3629, 35sseldi 3566 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → ((#‘𝑥) − 1) ∈ (0...(#‘𝑥)))
37 swrd0len 13274 . . . . . . . . . . . . 13 ((𝑥 ∈ Word 𝐵 ∧ ((#‘𝑥) − 1) ∈ (0...(#‘𝑥))) → (#‘(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩)) = ((#‘𝑥) − 1))
3828, 36, 37syl2anc 691 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → (#‘(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩)) = ((#‘𝑥) − 1))
3930oveq1d 6564 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → ((#‘𝑥) − 1) = ((𝑚 + 1) − 1))
40 nn0cn 11179 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
4140ad2antrr 758 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → 𝑚 ∈ ℂ)
42 ax-1cn 9873 . . . . . . . . . . . . 13 1 ∈ ℂ
43 pncan 10166 . . . . . . . . . . . . 13 ((𝑚 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑚 + 1) − 1) = 𝑚)
4441, 42, 43sylancl 693 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → ((𝑚 + 1) − 1) = 𝑚)
4538, 39, 443eqtrd 2648 . . . . . . . . . . 11 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → (#‘(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩)) = 𝑚)
46 fveq2 6103 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) → (#‘𝑦) = (#‘(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩)))
4746eqeq1d 2612 . . . . . . . . . . . . 13 (𝑦 = (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) → ((#‘𝑦) = 𝑚 ↔ (#‘(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩)) = 𝑚))
48 vex 3176 . . . . . . . . . . . . . . 15 𝑦 ∈ V
4948, 22sbcie 3437 . . . . . . . . . . . . . 14 ([𝑦 / 𝑥]𝜑𝜒)
50 dfsbcq 3404 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) → ([𝑦 / 𝑥]𝜑[(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) / 𝑥]𝜑))
5149, 50syl5bbr 273 . . . . . . . . . . . . 13 (𝑦 = (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) → (𝜒[(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) / 𝑥]𝜑))
5247, 51imbi12d 333 . . . . . . . . . . . 12 (𝑦 = (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) → (((#‘𝑦) = 𝑚𝜒) ↔ ((#‘(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩)) = 𝑚[(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) / 𝑥]𝜑)))
5352rspcv 3278 . . . . . . . . . . 11 ((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ∈ Word 𝐵 → (∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒) → ((#‘(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩)) = 𝑚[(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) / 𝑥]𝜑)))
5426, 27, 45, 53syl3c 64 . . . . . . . . . 10 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → [(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) / 𝑥]𝜑)
5533nnge1d 10940 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → 1 ≤ (#‘𝑥))
56 wrdlenge1n0 13195 . . . . . . . . . . . . . 14 (𝑥 ∈ Word 𝐵 → (𝑥 ≠ ∅ ↔ 1 ≤ (#‘𝑥)))
5756ad2antrl 760 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → (𝑥 ≠ ∅ ↔ 1 ≤ (#‘𝑥)))
5855, 57mpbird 246 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → 𝑥 ≠ ∅)
59 lswcl 13208 . . . . . . . . . . . 12 ((𝑥 ∈ Word 𝐵𝑥 ≠ ∅) → ( lastS ‘𝑥) ∈ 𝐵)
6028, 58, 59syl2anc 691 . . . . . . . . . . 11 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → ( lastS ‘𝑥) ∈ 𝐵)
61 oveq1 6556 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) → (𝑦 ++ ⟨“𝑧”⟩) = ((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“𝑧”⟩))
6261sbceq1d 3407 . . . . . . . . . . . . 13 (𝑦 = (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) → ([(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑[((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“𝑧”⟩) / 𝑥]𝜑))
6350, 62imbi12d 333 . . . . . . . . . . . 12 (𝑦 = (𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) → (([𝑦 / 𝑥]𝜑[(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑) ↔ ([(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) / 𝑥]𝜑[((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“𝑧”⟩) / 𝑥]𝜑)))
64 s1eq 13233 . . . . . . . . . . . . . . 15 (𝑧 = ( lastS ‘𝑥) → ⟨“𝑧”⟩ = ⟨“( lastS ‘𝑥)”⟩)
6564oveq2d 6565 . . . . . . . . . . . . . 14 (𝑧 = ( lastS ‘𝑥) → ((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“𝑧”⟩) = ((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“( lastS ‘𝑥)”⟩))
6665sbceq1d 3407 . . . . . . . . . . . . 13 (𝑧 = ( lastS ‘𝑥) → ([((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“𝑧”⟩) / 𝑥]𝜑[((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“( lastS ‘𝑥)”⟩) / 𝑥]𝜑))
6766imbi2d 329 . . . . . . . . . . . 12 (𝑧 = ( lastS ‘𝑥) → (([(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) / 𝑥]𝜑[((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“𝑧”⟩) / 𝑥]𝜑) ↔ ([(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) / 𝑥]𝜑[((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“( lastS ‘𝑥)”⟩) / 𝑥]𝜑)))
68 wrdind.6 . . . . . . . . . . . . 13 ((𝑦 ∈ Word 𝐵𝑧𝐵) → (𝜒𝜃))
69 ovex 6577 . . . . . . . . . . . . . 14 (𝑦 ++ ⟨“𝑧”⟩) ∈ V
70 wrdind.3 . . . . . . . . . . . . . 14 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (𝜑𝜃))
7169, 70sbcie 3437 . . . . . . . . . . . . 13 ([(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑𝜃)
7268, 49, 713imtr4g 284 . . . . . . . . . . . 12 ((𝑦 ∈ Word 𝐵𝑧𝐵) → ([𝑦 / 𝑥]𝜑[(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑))
7363, 67, 72vtocl2ga 3247 . . . . . . . . . . 11 (((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ∈ Word 𝐵 ∧ ( lastS ‘𝑥) ∈ 𝐵) → ([(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) / 𝑥]𝜑[((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“( lastS ‘𝑥)”⟩) / 𝑥]𝜑))
7426, 60, 73syl2anc 691 . . . . . . . . . 10 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → ([(𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) / 𝑥]𝜑[((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“( lastS ‘𝑥)”⟩) / 𝑥]𝜑))
7554, 74mpd 15 . . . . . . . . 9 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → [((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“( lastS ‘𝑥)”⟩) / 𝑥]𝜑)
76 wrdfin 13178 . . . . . . . . . . . . . 14 (𝑥 ∈ Word 𝐵𝑥 ∈ Fin)
7776ad2antrl 760 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → 𝑥 ∈ Fin)
78 hashnncl 13018 . . . . . . . . . . . . 13 (𝑥 ∈ Fin → ((#‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅))
7977, 78syl 17 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → ((#‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅))
8033, 79mpbid 221 . . . . . . . . . . 11 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → 𝑥 ≠ ∅)
81 swrdccatwrd 13320 . . . . . . . . . . . 12 ((𝑥 ∈ Word 𝐵𝑥 ≠ ∅) → ((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“( lastS ‘𝑥)”⟩) = 𝑥)
8281eqcomd 2616 . . . . . . . . . . 11 ((𝑥 ∈ Word 𝐵𝑥 ≠ ∅) → 𝑥 = ((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“( lastS ‘𝑥)”⟩))
8328, 80, 82syl2anc 691 . . . . . . . . . 10 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → 𝑥 = ((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“( lastS ‘𝑥)”⟩))
84 sbceq1a 3413 . . . . . . . . . 10 (𝑥 = ((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“( lastS ‘𝑥)”⟩) → (𝜑[((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“( lastS ‘𝑥)”⟩) / 𝑥]𝜑))
8583, 84syl 17 . . . . . . . . 9 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → (𝜑[((𝑥 substr ⟨0, ((#‘𝑥) − 1)⟩) ++ ⟨“( lastS ‘𝑥)”⟩) / 𝑥]𝜑))
8675, 85mpbird 246 . . . . . . . 8 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (#‘𝑥) = (𝑚 + 1))) → 𝜑)
8786expr 641 . . . . . . 7 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) ∧ 𝑥 ∈ Word 𝐵) → ((#‘𝑥) = (𝑚 + 1) → 𝜑))
8887ralrimiva 2949 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒)) → ∀𝑥 ∈ Word 𝐵((#‘𝑥) = (𝑚 + 1) → 𝜑))
8988ex 449 . . . . 5 (𝑚 ∈ ℕ0 → (∀𝑦 ∈ Word 𝐵((#‘𝑦) = 𝑚𝜒) → ∀𝑥 ∈ Word 𝐵((#‘𝑥) = (𝑚 + 1) → 𝜑)))
9024, 89syl5bi 231 . . . 4 (𝑚 ∈ ℕ0 → (∀𝑥 ∈ Word 𝐵((#‘𝑥) = 𝑚𝜑) → ∀𝑥 ∈ Word 𝐵((#‘𝑥) = (𝑚 + 1) → 𝜑)))
914, 7, 10, 13, 19, 90nn0ind 11348 . . 3 ((#‘𝐴) ∈ ℕ0 → ∀𝑥 ∈ Word 𝐵((#‘𝑥) = (#‘𝐴) → 𝜑))
921, 91syl 17 . 2 (𝐴 ∈ Word 𝐵 → ∀𝑥 ∈ Word 𝐵((#‘𝑥) = (#‘𝐴) → 𝜑))
93 eqidd 2611 . 2 (𝐴 ∈ Word 𝐵 → (#‘𝐴) = (#‘𝐴))
94 fveq2 6103 . . . . 5 (𝑥 = 𝐴 → (#‘𝑥) = (#‘𝐴))
9594eqeq1d 2612 . . . 4 (𝑥 = 𝐴 → ((#‘𝑥) = (#‘𝐴) ↔ (#‘𝐴) = (#‘𝐴)))
96 wrdind.4 . . . 4 (𝑥 = 𝐴 → (𝜑𝜏))
9795, 96imbi12d 333 . . 3 (𝑥 = 𝐴 → (((#‘𝑥) = (#‘𝐴) → 𝜑) ↔ ((#‘𝐴) = (#‘𝐴) → 𝜏)))
9897rspcv 3278 . 2 (𝐴 ∈ Word 𝐵 → (∀𝑥 ∈ Word 𝐵((#‘𝑥) = (#‘𝐴) → 𝜑) → ((#‘𝐴) = (#‘𝐴) → 𝜏)))
9992, 93, 98mp2d 47 1 (𝐴 ∈ Word 𝐵𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  [wsbc 3402  c0 3874  cop 4131   class class class wbr 4583  cfv 5804  (class class class)co 6549  Fincfn 7841  cc 9813  0cc0 9815  1c1 9816   + caddc 9818  cle 9954  cmin 10145  cn 10897  0cn0 11169  ...cfz 12197  ..^cfzo 12334  #chash 12979  Word cword 13146   lastS clsw 13147   ++ cconcat 13148  ⟨“cs1 13149   substr csubstr 13150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158
This theorem is referenced by:  frmdgsum  17222  gsumwrev  17619  gsmsymgrfix  17671  efginvrel2  17963  signstfvneq0  29975  signstfvc  29977  mrsubvrs  30673
  Copyright terms: Public domain W3C validator