Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem95 Structured version   Visualization version   GIF version

Theorem fourierdlem95 39094
Description: Algebraic manipulation of integrals, used by other lemmas. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem95.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem95.xre (𝜑𝑋 ∈ ℝ)
fourierdlem95.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem95.m (𝜑𝑀 ∈ ℕ)
fourierdlem95.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem95.x (𝜑𝑋 ∈ ran 𝑉)
fourierdlem95.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
fourierdlem95.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
fourierdlem95.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
fourierdlem95.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem95.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem95.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem95.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
fourierdlem95.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
fourierdlem95.i 𝐼 = (ℝ D 𝐹)
fourierdlem95.ifn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
fourierdlem95.b (𝜑𝐵 ∈ ((𝐼 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem95.c (𝜑𝐶 ∈ ((𝐼 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem95.y (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem95.w (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem95.admvol (𝜑𝐴 ∈ dom vol)
fourierdlem95.ass (𝜑𝐴 ⊆ ((-π[,]π) ∖ {0}))
fourierlemenplusacver2eqitgdirker.e 𝐸 = (𝑛 ∈ ℕ ↦ (∫𝐴(𝐺𝑠) d𝑠 / π))
fourierdlem95.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
fourierdlem95.o (𝜑𝑂 ∈ ℝ)
fourierdlem95.ifeqo ((𝜑𝑠𝐴) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑂)
fourierdlem95.itgdirker ((𝜑𝑛 ∈ ℕ) → ∫𝐴((𝐷𝑛)‘𝑠) d𝑠 = (1 / 2))
Assertion
Ref Expression
fourierdlem95 ((𝜑𝑛 ∈ ℕ) → ((𝐸𝑛) + (𝑂 / 2)) = ∫𝐴((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐶,𝑠   𝐷,𝑠   𝐹,𝑠   𝑖,𝐺,𝑠   𝐻,𝑠   𝐾,𝑠   𝐿,𝑠   𝑖,𝑀,𝑝,𝑚   𝑀,𝑠   𝑂,𝑠   𝑅,𝑠   𝑆,𝑠   𝑖,𝑉,𝑝   𝑉,𝑠   𝑊,𝑠   𝑖,𝑋,𝑝,𝑚   𝑋,𝑠   𝑌,𝑠   𝑖,𝑛,𝑠   𝜑,𝑖,𝑠
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑝)   𝐴(𝑖,𝑚,𝑛,𝑝)   𝐵(𝑖,𝑚,𝑛,𝑝)   𝐶(𝑖,𝑚,𝑛,𝑝)   𝐷(𝑖,𝑚,𝑛,𝑝)   𝑃(𝑖,𝑚,𝑛,𝑠,𝑝)   𝑅(𝑖,𝑚,𝑛,𝑝)   𝑆(𝑖,𝑚,𝑛,𝑝)   𝑈(𝑖,𝑚,𝑛,𝑠,𝑝)   𝐸(𝑖,𝑚,𝑛,𝑠,𝑝)   𝐹(𝑖,𝑚,𝑛,𝑝)   𝐺(𝑚,𝑛,𝑝)   𝐻(𝑖,𝑚,𝑛,𝑝)   𝐼(𝑖,𝑚,𝑛,𝑠,𝑝)   𝐾(𝑖,𝑚,𝑛,𝑝)   𝐿(𝑖,𝑚,𝑛,𝑝)   𝑀(𝑛)   𝑂(𝑖,𝑚,𝑛,𝑝)   𝑉(𝑚,𝑛)   𝑊(𝑖,𝑚,𝑛,𝑝)   𝑋(𝑛)   𝑌(𝑖,𝑚,𝑛,𝑝)

Proof of Theorem fourierdlem95
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simpr 476 . . . 4 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
2 fourierdlem95.ass . . . . . . . . . 10 (𝜑𝐴 ⊆ ((-π[,]π) ∖ {0}))
32difss2d 3702 . . . . . . . . 9 (𝜑𝐴 ⊆ (-π[,]π))
43adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ (-π[,]π))
54sselda 3568 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑠 ∈ (-π[,]π))
6 fourierdlem95.f . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
76adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
8 fourierdlem95.xre . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
98adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ℝ)
10 ioossre 12106 . . . . . . . . . . . . 13 (𝑋(,)+∞) ⊆ ℝ
1110a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑋(,)+∞) ⊆ ℝ)
126, 11fssresd 5984 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (𝑋(,)+∞)):(𝑋(,)+∞)⟶ℝ)
13 ioosscn 38563 . . . . . . . . . . . 12 (𝑋(,)+∞) ⊆ ℂ
1413a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑋(,)+∞) ⊆ ℂ)
15 eqid 2610 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
16 pnfxr 9971 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
1716a1i 11 . . . . . . . . . . . 12 (𝜑 → +∞ ∈ ℝ*)
188ltpnfd 11831 . . . . . . . . . . . 12 (𝜑𝑋 < +∞)
1915, 17, 8, 18lptioo1cn 38713 . . . . . . . . . . 11 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)+∞)))
20 fourierdlem95.y . . . . . . . . . . 11 (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
2112, 14, 19, 20limcrecl 38696 . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ)
2221adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ℝ)
23 ioossre 12106 . . . . . . . . . . . . 13 (-∞(,)𝑋) ⊆ ℝ
2423a1i 11 . . . . . . . . . . . 12 (𝜑 → (-∞(,)𝑋) ⊆ ℝ)
256, 24fssresd 5984 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (-∞(,)𝑋)):(-∞(,)𝑋)⟶ℝ)
26 ioosscn 38563 . . . . . . . . . . . 12 (-∞(,)𝑋) ⊆ ℂ
2726a1i 11 . . . . . . . . . . 11 (𝜑 → (-∞(,)𝑋) ⊆ ℂ)
28 mnfxr 9975 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
2928a1i 11 . . . . . . . . . . . 12 (𝜑 → -∞ ∈ ℝ*)
308mnfltd 11834 . . . . . . . . . . . 12 (𝜑 → -∞ < 𝑋)
3115, 29, 8, 30lptioo2cn 38712 . . . . . . . . . . 11 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(-∞(,)𝑋)))
32 fourierdlem95.w . . . . . . . . . . 11 (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
3325, 27, 31, 32limcrecl 38696 . . . . . . . . . 10 (𝜑𝑊 ∈ ℝ)
3433adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ)
35 fourierdlem95.h . . . . . . . . 9 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
36 fourierdlem95.k . . . . . . . . 9 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
37 fourierdlem95.u . . . . . . . . 9 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
381nnred 10912 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
39 fourierdlem95.s . . . . . . . . 9 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
40 fourierdlem95.g . . . . . . . . 9 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
417, 9, 22, 34, 35, 36, 37, 38, 39, 40fourierdlem67 39066 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐺:(-π[,]π)⟶ℝ)
4241ffvelrnda 6267 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐺𝑠) ∈ ℝ)
435, 42syldan 486 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐺𝑠) ∈ ℝ)
44 fourierdlem95.admvol . . . . . . . 8 (𝜑𝐴 ∈ dom vol)
4544adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ dom vol)
4641feqmptd 6159 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐺 = (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)))
47 fourierdlem95.p . . . . . . . . 9 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
48 fourierdlem95.x . . . . . . . . . 10 (𝜑𝑋 ∈ ran 𝑉)
4948adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ran 𝑉)
5020adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
5132adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
52 fourierdlem95.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
5352adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ ℕ)
54 fourierdlem95.v . . . . . . . . . 10 (𝜑𝑉 ∈ (𝑃𝑀))
5554adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑉 ∈ (𝑃𝑀))
56 fourierdlem95.fcn . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
5756adantlr 747 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
58 fourierdlem95.r . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
5958adantlr 747 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
60 fourierdlem95.l . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
6160adantlr 747 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
62 fveq2 6103 . . . . . . . . . . 11 (𝑗 = 𝑖 → (𝑉𝑗) = (𝑉𝑖))
6362oveq1d 6564 . . . . . . . . . 10 (𝑗 = 𝑖 → ((𝑉𝑗) − 𝑋) = ((𝑉𝑖) − 𝑋))
6463cbvmptv 4678 . . . . . . . . 9 (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)) = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
65 eqid 2610 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
66 fourierdlem95.i . . . . . . . . 9 𝐼 = (ℝ D 𝐹)
67 fourierdlem95.ifn . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
6867adantlr 747 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
69 fourierdlem95.b . . . . . . . . . 10 (𝜑𝐵 ∈ ((𝐼 ↾ (-∞(,)𝑋)) lim 𝑋))
7069adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ((𝐼 ↾ (-∞(,)𝑋)) lim 𝑋))
71 fourierdlem95.c . . . . . . . . . 10 (𝜑𝐶 ∈ ((𝐼 ↾ (𝑋(,)+∞)) lim 𝑋))
7271adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ((𝐼 ↾ (𝑋(,)+∞)) lim 𝑋))
7347, 7, 49, 50, 51, 35, 36, 37, 38, 39, 40, 53, 55, 57, 59, 61, 64, 65, 66, 68, 70, 72fourierdlem88 39087 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐺 ∈ 𝐿1)
7446, 73eqeltrrd 2689 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)) ∈ 𝐿1)
754, 45, 42, 74iblss 23377 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑠𝐴 ↦ (𝐺𝑠)) ∈ 𝐿1)
7643, 75itgrecl 23370 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫𝐴(𝐺𝑠) d𝑠 ∈ ℝ)
77 pire 24014 . . . . . 6 π ∈ ℝ
7877a1i 11 . . . . 5 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
79 pipos 24016 . . . . . . 7 0 < π
8077, 79gt0ne0ii 10443 . . . . . 6 π ≠ 0
8180a1i 11 . . . . 5 ((𝜑𝑛 ∈ ℕ) → π ≠ 0)
8276, 78, 81redivcld 10732 . . . 4 ((𝜑𝑛 ∈ ℕ) → (∫𝐴(𝐺𝑠) d𝑠 / π) ∈ ℝ)
83 fourierlemenplusacver2eqitgdirker.e . . . . 5 𝐸 = (𝑛 ∈ ℕ ↦ (∫𝐴(𝐺𝑠) d𝑠 / π))
8483fvmpt2 6200 . . . 4 ((𝑛 ∈ ℕ ∧ (∫𝐴(𝐺𝑠) d𝑠 / π) ∈ ℝ) → (𝐸𝑛) = (∫𝐴(𝐺𝑠) d𝑠 / π))
851, 82, 84syl2anc 691 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) = (∫𝐴(𝐺𝑠) d𝑠 / π))
86 fourierdlem95.o . . . . . . 7 (𝜑𝑂 ∈ ℝ)
8786recnd 9947 . . . . . 6 (𝜑𝑂 ∈ ℂ)
88 2cnd 10970 . . . . . 6 (𝜑 → 2 ∈ ℂ)
89 2ne0 10990 . . . . . . 7 2 ≠ 0
9089a1i 11 . . . . . 6 (𝜑 → 2 ≠ 0)
9187, 88, 90divrecd 10683 . . . . 5 (𝜑 → (𝑂 / 2) = (𝑂 · (1 / 2)))
9291adantr 480 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑂 / 2) = (𝑂 · (1 / 2)))
93 fourierdlem95.itgdirker . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ∫𝐴((𝐷𝑛)‘𝑠) d𝑠 = (1 / 2))
9493eqcomd 2616 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (1 / 2) = ∫𝐴((𝐷𝑛)‘𝑠) d𝑠)
9594oveq2d 6565 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑂 · (1 / 2)) = (𝑂 · ∫𝐴((𝐷𝑛)‘𝑠) d𝑠))
9692, 95eqtrd 2644 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝑂 / 2) = (𝑂 · ∫𝐴((𝐷𝑛)‘𝑠) d𝑠))
9785, 96oveq12d 6567 . 2 ((𝜑𝑛 ∈ ℕ) → ((𝐸𝑛) + (𝑂 / 2)) = ((∫𝐴(𝐺𝑠) d𝑠 / π) + (𝑂 · ∫𝐴((𝐷𝑛)‘𝑠) d𝑠)))
982sselda 3568 . . . . . . . 8 ((𝜑𝑠𝐴) → 𝑠 ∈ ((-π[,]π) ∖ {0}))
9998adantlr 747 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑠 ∈ ((-π[,]π) ∖ {0}))
100 fourierdlem95.d . . . . . . . 8 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
101 eqid 2610 . . . . . . . 8 ((-π[,]π) ∖ {0}) = ((-π[,]π) ∖ {0})
1026, 8, 21, 33, 100, 35, 36, 37, 39, 40, 101fourierdlem66 39065 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ ((-π[,]π) ∖ {0})) → (𝐺𝑠) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
10399, 102syldan 486 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐺𝑠) = (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
104103itgeq2dv 23354 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫𝐴(𝐺𝑠) d𝑠 = ∫𝐴(π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) d𝑠)
105104oveq1d 6564 . . . 4 ((𝜑𝑛 ∈ ℕ) → (∫𝐴(𝐺𝑠) d𝑠 / π) = (∫𝐴(π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) d𝑠 / π))
10678recnd 9947 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → π ∈ ℂ)
1076adantr 480 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → 𝐹:ℝ⟶ℝ)
1088adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠𝐴) → 𝑋 ∈ ℝ)
109 difss 3699 . . . . . . . . . . . . . 14 ((-π[,]π) ∖ {0}) ⊆ (-π[,]π)
11077renegcli 10221 . . . . . . . . . . . . . . 15 -π ∈ ℝ
111 iccssre 12126 . . . . . . . . . . . . . . 15 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
112110, 77, 111mp2an 704 . . . . . . . . . . . . . 14 (-π[,]π) ⊆ ℝ
113109, 112sstri 3577 . . . . . . . . . . . . 13 ((-π[,]π) ∖ {0}) ⊆ ℝ
114113, 98sseldi 3566 . . . . . . . . . . . 12 ((𝜑𝑠𝐴) → 𝑠 ∈ ℝ)
115108, 114readdcld 9948 . . . . . . . . . . 11 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ ℝ)
116107, 115ffvelrnd 6268 . . . . . . . . . 10 ((𝜑𝑠𝐴) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
11721, 33ifcld 4081 . . . . . . . . . . 11 (𝜑 → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
118117adantr 480 . . . . . . . . . 10 ((𝜑𝑠𝐴) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℝ)
119116, 118resubcld 10337 . . . . . . . . 9 ((𝜑𝑠𝐴) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℝ)
120119adantlr 747 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) ∈ ℝ)
1211adantr 480 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑛 ∈ ℕ)
122114adantlr 747 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑠 ∈ ℝ)
123100dirkerre 38988 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ ℝ) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
124121, 122, 123syl2anc 691 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
125120, 124remulcld 9949 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
126103eqcomd 2616 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) = (𝐺𝑠))
127126oveq1d 6564 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) / π) = ((𝐺𝑠) / π))
128 picn 24015 . . . . . . . . . . . . 13 π ∈ ℂ
129128a1i 11 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → π ∈ ℂ)
130125recnd 9947 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) ∈ ℂ)
13180a1i 11 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → π ≠ 0)
132129, 130, 129, 131div23d 10717 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) / π) = ((π / π) · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
13343recnd 9947 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐺𝑠) ∈ ℂ)
134133, 129, 131divrec2d 10684 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐺𝑠) / π) = ((1 / π) · (𝐺𝑠)))
135127, 132, 1343eqtr3rd 2653 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((1 / π) · (𝐺𝑠)) = ((π / π) · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
136128, 80dividi 10637 . . . . . . . . . . . 12 (π / π) = 1
137136a1i 11 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (π / π) = 1)
138137oveq1d 6564 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((π / π) · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) = (1 · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))))
139130mulid2d 9937 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (1 · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)))
140135, 138, 1393eqtrrd 2649 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) = ((1 / π) · (𝐺𝑠)))
141140mpteq2dva 4672 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑠𝐴 ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) = (𝑠𝐴 ↦ ((1 / π) · (𝐺𝑠))))
142106, 81reccld 10673 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1 / π) ∈ ℂ)
143142, 43, 75iblmulc2 23403 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑠𝐴 ↦ ((1 / π) · (𝐺𝑠))) ∈ 𝐿1)
144141, 143eqeltrd 2688 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑠𝐴 ↦ (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
145106, 125, 144itgmulc2 23406 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (π · ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠) = ∫𝐴(π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) d𝑠)
146145eqcomd 2616 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫𝐴(π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) d𝑠 = (π · ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠))
147146oveq1d 6564 . . . 4 ((𝜑𝑛 ∈ ℕ) → (∫𝐴(π · (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠))) d𝑠 / π) = ((π · ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠) / π))
148125, 144itgcl 23356 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠 ∈ ℂ)
149148, 106, 81divcan3d 10685 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((π · ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠) / π) = ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠)
150105, 147, 1493eqtrd 2648 . . 3 ((𝜑𝑛 ∈ ℕ) → (∫𝐴(𝐺𝑠) d𝑠 / π) = ∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠)
15187adantr 480 . . . 4 ((𝜑𝑛 ∈ ℕ) → 𝑂 ∈ ℂ)
152112sseli 3564 . . . . . . 7 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
153152, 123sylan2 490 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
154153adantll 746 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
155110a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → -π ∈ ℝ)
156 ax-resscn 9872 . . . . . . . . . 10 ℝ ⊆ ℂ
157156a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → ℝ ⊆ ℂ)
158 ssid 3587 . . . . . . . . 9 ℂ ⊆ ℂ
159 cncfss 22510 . . . . . . . . 9 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((-π[,]π)–cn→ℝ) ⊆ ((-π[,]π)–cn→ℂ))
160157, 158, 159sylancl 693 . . . . . . . 8 (𝑛 ∈ ℕ → ((-π[,]π)–cn→ℝ) ⊆ ((-π[,]π)–cn→ℂ))
161 eqid 2610 . . . . . . . . 9 (𝑠 ∈ ℝ ↦ ((𝐷𝑛)‘𝑠)) = (𝑠 ∈ ℝ ↦ ((𝐷𝑛)‘𝑠))
162100dirkerf 38990 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝐷𝑛):ℝ⟶ℝ)
163162feqmptd 6159 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝐷𝑛) = (𝑠 ∈ ℝ ↦ ((𝐷𝑛)‘𝑠)))
164100dirkercncf 39000 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
165163, 164eqeltrrd 2689 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝑠 ∈ ℝ ↦ ((𝐷𝑛)‘𝑠)) ∈ (ℝ–cn→ℝ))
166112a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → (-π[,]π) ⊆ ℝ)
167 ssid 3587 . . . . . . . . . 10 ℝ ⊆ ℝ
168167a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → ℝ ⊆ ℝ)
169161, 165, 166, 168, 153cncfmptssg 38755 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑠 ∈ (-π[,]π) ↦ ((𝐷𝑛)‘𝑠)) ∈ ((-π[,]π)–cn→ℝ))
170160, 169sseldd 3569 . . . . . . 7 (𝑛 ∈ ℕ → (𝑠 ∈ (-π[,]π) ↦ ((𝐷𝑛)‘𝑠)) ∈ ((-π[,]π)–cn→ℂ))
171170adantl 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝐷𝑛)‘𝑠)) ∈ ((-π[,]π)–cn→ℂ))
172 cniccibl 23413 . . . . . 6 ((-π ∈ ℝ ∧ π ∈ ℝ ∧ (𝑠 ∈ (-π[,]π) ↦ ((𝐷𝑛)‘𝑠)) ∈ ((-π[,]π)–cn→ℂ)) → (𝑠 ∈ (-π[,]π) ↦ ((𝐷𝑛)‘𝑠)) ∈ 𝐿1)
173155, 78, 171, 172syl3anc 1318 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝐷𝑛)‘𝑠)) ∈ 𝐿1)
1744, 45, 154, 173iblss 23377 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑠𝐴 ↦ ((𝐷𝑛)‘𝑠)) ∈ 𝐿1)
175151, 124, 174itgmulc2 23406 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝑂 · ∫𝐴((𝐷𝑛)‘𝑠) d𝑠) = ∫𝐴(𝑂 · ((𝐷𝑛)‘𝑠)) d𝑠)
176150, 175oveq12d 6567 . 2 ((𝜑𝑛 ∈ ℕ) → ((∫𝐴(𝐺𝑠) d𝑠 / π) + (𝑂 · ∫𝐴((𝐷𝑛)‘𝑠) d𝑠)) = (∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫𝐴(𝑂 · ((𝐷𝑛)‘𝑠)) d𝑠))
17786ad2antrr 758 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑂 ∈ ℝ)
178177, 124remulcld 9949 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑂 · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
179151, 124, 174iblmulc2 23403 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑠𝐴 ↦ (𝑂 · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
180125, 144, 178, 179itgadd 23397 . . 3 ((𝜑𝑛 ∈ ℕ) → ∫𝐴((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) + (𝑂 · ((𝐷𝑛)‘𝑠))) d𝑠 = (∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫𝐴(𝑂 · ((𝐷𝑛)‘𝑠)) d𝑠))
181 fourierdlem95.ifeqo . . . . . . . . 9 ((𝜑𝑠𝐴) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑂)
182181eqcomd 2616 . . . . . . . 8 ((𝜑𝑠𝐴) → 𝑂 = if(0 < 𝑠, 𝑌, 𝑊))
183182adantlr 747 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → 𝑂 = if(0 < 𝑠, 𝑌, 𝑊))
184183oveq1d 6564 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝑂 · ((𝐷𝑛)‘𝑠)) = (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠)))
185184oveq2d 6565 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) + (𝑂 · ((𝐷𝑛)‘𝑠))) = ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) + (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))))
186116recnd 9947 . . . . . . . 8 ((𝜑𝑠𝐴) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
187186adantlr 747 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
188118recnd 9947 . . . . . . . 8 ((𝜑𝑠𝐴) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℂ)
189188adantlr 747 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → if(0 < 𝑠, 𝑌, 𝑊) ∈ ℂ)
190124recnd 9947 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐷𝑛)‘𝑠) ∈ ℂ)
191187, 189, 190subdird 10366 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) = (((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) − (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))))
192191oveq1d 6564 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) + (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))) = ((((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) − (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))) + (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))))
193187, 190mulcld 9939 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℂ)
194189, 190mulcld 9939 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠)) ∈ ℂ)
195193, 194npcand 10275 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) − (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))) + (if(0 < 𝑠, 𝑌, 𝑊) · ((𝐷𝑛)‘𝑠))) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
196185, 192, 1953eqtrd 2648 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠𝐴) → ((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) + (𝑂 · ((𝐷𝑛)‘𝑠))) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
197196itgeq2dv 23354 . . 3 ((𝜑𝑛 ∈ ℕ) → ∫𝐴((((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) + (𝑂 · ((𝐷𝑛)‘𝑠))) d𝑠 = ∫𝐴((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
198180, 197eqtr3d 2646 . 2 ((𝜑𝑛 ∈ ℕ) → (∫𝐴(((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫𝐴(𝑂 · ((𝐷𝑛)‘𝑠)) d𝑠) = ∫𝐴((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
19997, 176, 1983eqtrd 2648 1 ((𝜑𝑛 ∈ ℕ) → ((𝐸𝑛) + (𝑂 / 2)) = ∫𝐴((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  {crab 2900  cdif 3537  wss 3540  ifcif 4036  {csn 4125   class class class wbr 4583  cmpt 4643  dom cdm 5038  ran crn 5039  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  +∞cpnf 9950  -∞cmnf 9951  *cxr 9952   < clt 9953  cmin 10145  -cneg 10146   / cdiv 10563  cn 10897  2c2 10947  (,)cioo 12046  [,]cicc 12049  ...cfz 12197  ..^cfzo 12334   mod cmo 12530  sincsin 14633  πcpi 14636  TopOpenctopn 15905  fldccnfld 19567  cnccncf 22487  volcvol 23039  𝐿1cibl 23192  citg 23193   lim climc 23432   D cdv 23433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-t1 20928  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196  df-ibl 23197  df-itg 23198  df-0p 23243  df-limc 23436  df-dv 23437
This theorem is referenced by:  fourierdlem103  39102  fourierdlem104  39103
  Copyright terms: Public domain W3C validator