Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem44 Structured version   Visualization version   GIF version

Theorem etransclem44 39171
Description: The given finite sum is nonzero. This is the claim proved after equation (7) in [Juillerat] p. 12 . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem44.a (𝜑𝐴:ℕ0⟶ℤ)
etransclem44.a0 (𝜑 → (𝐴‘0) ≠ 0)
etransclem44.m (𝜑𝑀 ∈ ℕ0)
etransclem44.p (𝜑𝑃 ∈ ℙ)
etransclem44.ap (𝜑 → (abs‘(𝐴‘0)) < 𝑃)
etransclem44.mp (𝜑 → (!‘𝑀) < 𝑃)
etransclem44.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem44.k 𝐾 = (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))
Assertion
Ref Expression
etransclem44 (𝜑𝐾 ≠ 0)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑗,𝑀,𝑘,𝑥   𝑃,𝑗,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗)   𝐹(𝑥,𝑗)   𝐾(𝑥,𝑗,𝑘)

Proof of Theorem etransclem44
Dummy variables 𝑐 𝑑 𝑛 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem44.k . . . 4 𝐾 = (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))
21a1i 11 . . 3 (𝜑𝐾 = (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
3 nfv 1830 . . . . 5 𝑘𝜑
4 nfcv 2751 . . . . 5 𝑘((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0))
5 fzfi 12633 . . . . . . 7 (0...𝑀) ∈ Fin
6 fzfi 12633 . . . . . . 7 (0...((𝑀 · 𝑃) + (𝑃 − 1))) ∈ Fin
7 xpfi 8116 . . . . . . 7 (((0...𝑀) ∈ Fin ∧ (0...((𝑀 · 𝑃) + (𝑃 − 1))) ∈ Fin) → ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin)
85, 6, 7mp2an 704 . . . . . 6 ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin
98a1i 11 . . . . 5 (𝜑 → ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin)
10 etransclem44.a . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℤ)
1110adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝐴:ℕ0⟶ℤ)
12 fzssnn0 38474 . . . . . . . . . 10 (0...𝑀) ⊆ ℕ0
13 xp1st 7089 . . . . . . . . . 10 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (1st𝑘) ∈ (0...𝑀))
1412, 13sseldi 3566 . . . . . . . . 9 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (1st𝑘) ∈ ℕ0)
1514adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (1st𝑘) ∈ ℕ0)
1611, 15ffvelrnd 6268 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (𝐴‘(1st𝑘)) ∈ ℤ)
17 reelprrecn 9907 . . . . . . . . 9 ℝ ∈ {ℝ, ℂ}
1817a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ℝ ∈ {ℝ, ℂ})
19 reopn 38442 . . . . . . . . . 10 ℝ ∈ (topGen‘ran (,))
20 eqid 2610 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2120tgioo2 22414 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
2219, 21eleqtri 2686 . . . . . . . . 9 ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ)
2322a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
24 etransclem44.p . . . . . . . . . 10 (𝜑𝑃 ∈ ℙ)
25 prmnn 15226 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2624, 25syl 17 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
2726adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝑃 ∈ ℕ)
28 etransclem44.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ0)
2928adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝑀 ∈ ℕ0)
30 etransclem44.f . . . . . . . 8 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
31 xp2nd 7090 . . . . . . . . . 10 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (2nd𝑘) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))))
32 elfznn0 12302 . . . . . . . . . 10 ((2nd𝑘) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))) → (2nd𝑘) ∈ ℕ0)
3331, 32syl 17 . . . . . . . . 9 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (2nd𝑘) ∈ ℕ0)
3433adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (2nd𝑘) ∈ ℕ0)
3515nn0red 11229 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (1st𝑘) ∈ ℝ)
3615nn0zd 11356 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (1st𝑘) ∈ ℤ)
3718, 23, 27, 29, 30, 34, 35, 36etransclem42 39169 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ∈ ℤ)
3816, 37zmulcld 11364 . . . . . 6 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℤ)
3938zcnd 11359 . . . . 5 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℂ)
40 nn0uz 11598 . . . . . . . 8 0 = (ℤ‘0)
4128, 40syl6eleq 2698 . . . . . . 7 (𝜑𝑀 ∈ (ℤ‘0))
42 eluzfz1 12219 . . . . . . 7 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
4341, 42syl 17 . . . . . 6 (𝜑 → 0 ∈ (0...𝑀))
44 0zd 11266 . . . . . . . . 9 (𝜑 → 0 ∈ ℤ)
4528nn0zd 11356 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
4626nnzd 11357 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℤ)
4745, 46zmulcld 11364 . . . . . . . . . 10 (𝜑 → (𝑀 · 𝑃) ∈ ℤ)
48 nnm1nn0 11211 . . . . . . . . . . . 12 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
4926, 48syl 17 . . . . . . . . . . 11 (𝜑 → (𝑃 − 1) ∈ ℕ0)
5049nn0zd 11356 . . . . . . . . . 10 (𝜑 → (𝑃 − 1) ∈ ℤ)
5147, 50zaddcld 11362 . . . . . . . . 9 (𝜑 → ((𝑀 · 𝑃) + (𝑃 − 1)) ∈ ℤ)
5244, 51, 503jca 1235 . . . . . . . 8 (𝜑 → (0 ∈ ℤ ∧ ((𝑀 · 𝑃) + (𝑃 − 1)) ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ))
5349nn0ge0d 11231 . . . . . . . 8 (𝜑 → 0 ≤ (𝑃 − 1))
5426nnnn0d 11228 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℕ0)
5528, 54nn0mulcld 11233 . . . . . . . . . 10 (𝜑 → (𝑀 · 𝑃) ∈ ℕ0)
5655nn0ge0d 11231 . . . . . . . . 9 (𝜑 → 0 ≤ (𝑀 · 𝑃))
5749nn0red 11229 . . . . . . . . . 10 (𝜑 → (𝑃 − 1) ∈ ℝ)
5847zred 11358 . . . . . . . . . 10 (𝜑 → (𝑀 · 𝑃) ∈ ℝ)
5957, 58addge02d 10495 . . . . . . . . 9 (𝜑 → (0 ≤ (𝑀 · 𝑃) ↔ (𝑃 − 1) ≤ ((𝑀 · 𝑃) + (𝑃 − 1))))
6056, 59mpbid 221 . . . . . . . 8 (𝜑 → (𝑃 − 1) ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))
6152, 53, 60jca32 556 . . . . . . 7 (𝜑 → ((0 ∈ ℤ ∧ ((𝑀 · 𝑃) + (𝑃 − 1)) ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ) ∧ (0 ≤ (𝑃 − 1) ∧ (𝑃 − 1) ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))))
62 elfz2 12204 . . . . . . 7 ((𝑃 − 1) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))) ↔ ((0 ∈ ℤ ∧ ((𝑀 · 𝑃) + (𝑃 − 1)) ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ) ∧ (0 ≤ (𝑃 − 1) ∧ (𝑃 − 1) ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))))
6361, 62sylibr 223 . . . . . 6 (𝜑 → (𝑃 − 1) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))))
64 opelxp 5070 . . . . . 6 (⟨0, (𝑃 − 1)⟩ ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ↔ (0 ∈ (0...𝑀) ∧ (𝑃 − 1) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))))
6543, 63, 64sylanbrc 695 . . . . 5 (𝜑 → ⟨0, (𝑃 − 1)⟩ ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))))
66 fveq2 6103 . . . . . . . 8 (𝑘 = ⟨0, (𝑃 − 1)⟩ → (1st𝑘) = (1st ‘⟨0, (𝑃 − 1)⟩))
67 0re 9919 . . . . . . . . 9 0 ∈ ℝ
68 ovex 6577 . . . . . . . . 9 (𝑃 − 1) ∈ V
69 op1stg 7071 . . . . . . . . 9 ((0 ∈ ℝ ∧ (𝑃 − 1) ∈ V) → (1st ‘⟨0, (𝑃 − 1)⟩) = 0)
7067, 68, 69mp2an 704 . . . . . . . 8 (1st ‘⟨0, (𝑃 − 1)⟩) = 0
7166, 70syl6eq 2660 . . . . . . 7 (𝑘 = ⟨0, (𝑃 − 1)⟩ → (1st𝑘) = 0)
7271fveq2d 6107 . . . . . 6 (𝑘 = ⟨0, (𝑃 − 1)⟩ → (𝐴‘(1st𝑘)) = (𝐴‘0))
73 fveq2 6103 . . . . . . . . 9 (𝑘 = ⟨0, (𝑃 − 1)⟩ → (2nd𝑘) = (2nd ‘⟨0, (𝑃 − 1)⟩))
74 op2ndg 7072 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (𝑃 − 1) ∈ V) → (2nd ‘⟨0, (𝑃 − 1)⟩) = (𝑃 − 1))
7567, 68, 74mp2an 704 . . . . . . . . 9 (2nd ‘⟨0, (𝑃 − 1)⟩) = (𝑃 − 1)
7673, 75syl6eq 2660 . . . . . . . 8 (𝑘 = ⟨0, (𝑃 − 1)⟩ → (2nd𝑘) = (𝑃 − 1))
7776fveq2d 6107 . . . . . . 7 (𝑘 = ⟨0, (𝑃 − 1)⟩ → ((ℝ D𝑛 𝐹)‘(2nd𝑘)) = ((ℝ D𝑛 𝐹)‘(𝑃 − 1)))
7877, 71fveq12d 6109 . . . . . 6 (𝑘 = ⟨0, (𝑃 − 1)⟩ → (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) = (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0))
7972, 78oveq12d 6567 . . . . 5 (𝑘 = ⟨0, (𝑃 − 1)⟩ → ((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) = ((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)))
803, 4, 9, 39, 65, 79fsumsplit1 38639 . . . 4 (𝜑 → Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) = (((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) + Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)))))
8180oveq1d 6564 . . 3 (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = ((((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) + Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)))) / (!‘(𝑃 − 1))))
8212, 43sseldi 3566 . . . . . . 7 (𝜑 → 0 ∈ ℕ0)
8310, 82ffvelrnd 6268 . . . . . 6 (𝜑 → (𝐴‘0) ∈ ℤ)
8417a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
8522a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
8667a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
8784, 85, 26, 28, 30, 49, 86, 44etransclem42 39169 . . . . . 6 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) ∈ ℤ)
8883, 87zmulcld 11364 . . . . 5 (𝜑 → ((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) ∈ ℤ)
8988zcnd 11359 . . . 4 (𝜑 → ((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) ∈ ℂ)
90 difss 3699 . . . . . . . 8 (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ⊆ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))
91 ssfi 8065 . . . . . . . 8 ((((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin ∧ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ⊆ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∈ Fin)
928, 90, 91mp2an 704 . . . . . . 7 (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∈ Fin
9392a1i 11 . . . . . 6 (𝜑 → (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∈ Fin)
94 eldifi 3694 . . . . . . 7 (𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) → 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))))
9594, 38sylan2 490 . . . . . 6 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℤ)
9693, 95fsumzcl 14313 . . . . 5 (𝜑 → Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℤ)
9796zcnd 11359 . . . 4 (𝜑 → Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℂ)
9849faccld 12933 . . . . 5 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
9998nncnd 10913 . . . 4 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
10098nnne0d 10942 . . . 4 (𝜑 → (!‘(𝑃 − 1)) ≠ 0)
10189, 97, 99, 100divdird 10718 . . 3 (𝜑 → ((((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) + Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)))) / (!‘(𝑃 − 1))) = ((((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))) + (Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))))
1022, 81, 1013eqtrd 2648 . 2 (𝜑𝐾 = ((((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))) + (Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))))
10326nnne0d 10942 . . 3 (𝜑𝑃 ≠ 0)
10483zcnd 11359 . . . . 5 (𝜑 → (𝐴‘0) ∈ ℂ)
10587zcnd 11359 . . . . 5 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) ∈ ℂ)
106104, 105, 99, 100divassd 10715 . . . 4 (𝜑 → (((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))) = ((𝐴‘0) · ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))))
107 etransclem5 39132 . . . . . . 7 (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ ℝ ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ ℝ ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
108 etransclem11 39138 . . . . . . 7 (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
10984, 85, 26, 28, 30, 49, 107, 108, 43, 86etransclem37 39164 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ∥ (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0))
11098nnzd 11357 . . . . . . 7 (𝜑 → (!‘(𝑃 − 1)) ∈ ℤ)
111 dvdsval2 14824 . . . . . . 7 (((!‘(𝑃 − 1)) ∈ ℤ ∧ (!‘(𝑃 − 1)) ≠ 0 ∧ (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) ∈ ℤ) → ((!‘(𝑃 − 1)) ∥ (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) ↔ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) ∈ ℤ))
112110, 100, 87, 111syl3anc 1318 . . . . . 6 (𝜑 → ((!‘(𝑃 − 1)) ∥ (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) ↔ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) ∈ ℤ))
113109, 112mpbid 221 . . . . 5 (𝜑 → ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) ∈ ℤ)
11483, 113zmulcld 11364 . . . 4 (𝜑 → ((𝐴‘0) · ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))) ∈ ℤ)
115106, 114eqeltrd 2688 . . 3 (𝜑 → (((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))) ∈ ℤ)
11694, 39sylan2 490 . . . . 5 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℂ)
11793, 99, 116, 100fsumdivc 14360 . . . 4 (𝜑 → (Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})(((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
11816zcnd 11359 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (𝐴‘(1st𝑘)) ∈ ℂ)
11994, 118sylan2 490 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (𝐴‘(1st𝑘)) ∈ ℂ)
12094, 37sylan2 490 . . . . . . . 8 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ∈ ℤ)
121120zcnd 11359 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ∈ ℂ)
12299adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (!‘(𝑃 − 1)) ∈ ℂ)
123100adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (!‘(𝑃 − 1)) ≠ 0)
124119, 121, 122, 123divassd 10715 . . . . . 6 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = ((𝐴‘(1st𝑘)) · ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1)))))
12594, 16sylan2 490 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (𝐴‘(1st𝑘)) ∈ ℤ)
12617a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ℝ ∈ {ℝ, ℂ})
12722a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
12826adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → 𝑃 ∈ ℕ)
12928adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → 𝑀 ∈ ℕ0)
13094adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))))
131130, 33syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (2nd𝑘) ∈ ℕ0)
132130, 13syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (1st𝑘) ∈ (0...𝑀))
13394, 35sylan2 490 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (1st𝑘) ∈ ℝ)
134126, 127, 128, 129, 30, 131, 107, 108, 132, 133etransclem37 39164 . . . . . . . 8 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (!‘(𝑃 − 1)) ∥ (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)))
135110adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (!‘(𝑃 − 1)) ∈ ℤ)
136 dvdsval2 14824 . . . . . . . . 9 (((!‘(𝑃 − 1)) ∈ ℤ ∧ (!‘(𝑃 − 1)) ≠ 0 ∧ (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ∈ ℤ) → ((!‘(𝑃 − 1)) ∥ (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ↔ ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))) ∈ ℤ))
137135, 123, 120, 136syl3anc 1318 . . . . . . . 8 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ((!‘(𝑃 − 1)) ∥ (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ↔ ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))) ∈ ℤ))
138134, 137mpbid 221 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))) ∈ ℤ)
139125, 138zmulcld 11364 . . . . . 6 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ((𝐴‘(1st𝑘)) · ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1)))) ∈ ℤ)
140124, 139eqeltrd 2688 . . . . 5 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℤ)
14193, 140fsumzcl 14313 . . . 4 (𝜑 → Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})(((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℤ)
142117, 141eqeltrd 2688 . . 3 (𝜑 → (Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℤ)
143 1zzd 11285 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
144 zabscl 13901 . . . . . . . . . . . . 13 ((𝐴‘0) ∈ ℤ → (abs‘(𝐴‘0)) ∈ ℤ)
14583, 144syl 17 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴‘0)) ∈ ℤ)
146143, 50, 1453jca 1235 . . . . . . . . . . 11 (𝜑 → (1 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ (abs‘(𝐴‘0)) ∈ ℤ))
147 nn0abscl 13900 . . . . . . . . . . . . . 14 ((𝐴‘0) ∈ ℤ → (abs‘(𝐴‘0)) ∈ ℕ0)
14883, 147syl 17 . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴‘0)) ∈ ℕ0)
149 etransclem44.a0 . . . . . . . . . . . . . 14 (𝜑 → (𝐴‘0) ≠ 0)
150104, 149absne0d 14034 . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴‘0)) ≠ 0)
151 elnnne0 11183 . . . . . . . . . . . . 13 ((abs‘(𝐴‘0)) ∈ ℕ ↔ ((abs‘(𝐴‘0)) ∈ ℕ0 ∧ (abs‘(𝐴‘0)) ≠ 0))
152148, 150, 151sylanbrc 695 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴‘0)) ∈ ℕ)
153152nnge1d 10940 . . . . . . . . . . 11 (𝜑 → 1 ≤ (abs‘(𝐴‘0)))
154 etransclem44.ap . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴‘0)) < 𝑃)
155 zltlem1 11307 . . . . . . . . . . . . 13 (((abs‘(𝐴‘0)) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((abs‘(𝐴‘0)) < 𝑃 ↔ (abs‘(𝐴‘0)) ≤ (𝑃 − 1)))
156145, 46, 155syl2anc 691 . . . . . . . . . . . 12 (𝜑 → ((abs‘(𝐴‘0)) < 𝑃 ↔ (abs‘(𝐴‘0)) ≤ (𝑃 − 1)))
157154, 156mpbid 221 . . . . . . . . . . 11 (𝜑 → (abs‘(𝐴‘0)) ≤ (𝑃 − 1))
158146, 153, 157jca32 556 . . . . . . . . . 10 (𝜑 → ((1 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ (abs‘(𝐴‘0)) ∈ ℤ) ∧ (1 ≤ (abs‘(𝐴‘0)) ∧ (abs‘(𝐴‘0)) ≤ (𝑃 − 1))))
159 elfz2 12204 . . . . . . . . . 10 ((abs‘(𝐴‘0)) ∈ (1...(𝑃 − 1)) ↔ ((1 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ (abs‘(𝐴‘0)) ∈ ℤ) ∧ (1 ≤ (abs‘(𝐴‘0)) ∧ (abs‘(𝐴‘0)) ≤ (𝑃 − 1))))
160158, 159sylibr 223 . . . . . . . . 9 (𝜑 → (abs‘(𝐴‘0)) ∈ (1...(𝑃 − 1)))
161 fzm1ndvds 14882 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ (abs‘(𝐴‘0)) ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ (abs‘(𝐴‘0)))
16226, 160, 161syl2anc 691 . . . . . . . 8 (𝜑 → ¬ 𝑃 ∥ (abs‘(𝐴‘0)))
163 dvdsabsb 14839 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ (𝐴‘0) ∈ ℤ) → (𝑃 ∥ (𝐴‘0) ↔ 𝑃 ∥ (abs‘(𝐴‘0))))
16446, 83, 163syl2anc 691 . . . . . . . 8 (𝜑 → (𝑃 ∥ (𝐴‘0) ↔ 𝑃 ∥ (abs‘(𝐴‘0))))
165162, 164mtbird 314 . . . . . . 7 (𝜑 → ¬ 𝑃 ∥ (𝐴‘0))
166 etransclem44.mp . . . . . . . 8 (𝜑 → (!‘𝑀) < 𝑃)
16728, 24, 166, 30etransclem41 39168 . . . . . . 7 (𝜑 → ¬ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))
168165, 167jca 553 . . . . . 6 (𝜑 → (¬ 𝑃 ∥ (𝐴‘0) ∧ ¬ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))))
169 pm4.56 515 . . . . . 6 ((¬ 𝑃 ∥ (𝐴‘0) ∧ ¬ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))) ↔ ¬ (𝑃 ∥ (𝐴‘0) ∨ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))))
170168, 169sylib 207 . . . . 5 (𝜑 → ¬ (𝑃 ∥ (𝐴‘0) ∨ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))))
171 euclemma 15263 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴‘0) ∈ ℤ ∧ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))) ∈ ℤ) → (𝑃 ∥ ((𝐴‘0) · ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))) ↔ (𝑃 ∥ (𝐴‘0) ∨ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))))
17224, 83, 113, 171syl3anc 1318 . . . . 5 (𝜑 → (𝑃 ∥ ((𝐴‘0) · ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))) ↔ (𝑃 ∥ (𝐴‘0) ∨ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))))
173170, 172mtbird 314 . . . 4 (𝜑 → ¬ 𝑃 ∥ ((𝐴‘0) · ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))))
174106breq2d 4595 . . . 4 (𝜑 → (𝑃 ∥ (((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))) ↔ 𝑃 ∥ ((𝐴‘0) · ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))))
175173, 174mtbird 314 . . 3 (𝜑 → ¬ 𝑃 ∥ (((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))))
17646adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → 𝑃 ∈ ℤ)
177176, 125, 1383jca 1235 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → (𝑃 ∈ ℤ ∧ (𝐴‘(1st𝑘)) ∈ ℤ ∧ ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))) ∈ ℤ))
178 eldifn 3695 . . . . . . . . . 10 (𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) → ¬ 𝑘 ∈ {⟨0, (𝑃 − 1)⟩})
17994adantr 480 . . . . . . . . . . . . 13 ((𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∧ ((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0)) → 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))))
180 1st2nd2 7096 . . . . . . . . . . . . 13 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → 𝑘 = ⟨(1st𝑘), (2nd𝑘)⟩)
181179, 180syl 17 . . . . . . . . . . . 12 ((𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∧ ((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0)) → 𝑘 = ⟨(1st𝑘), (2nd𝑘)⟩)
182 simpr 476 . . . . . . . . . . . . . 14 (((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0) → (1st𝑘) = 0)
183 simpl 472 . . . . . . . . . . . . . 14 (((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0) → (2nd𝑘) = (𝑃 − 1))
184182, 183opeq12d 4348 . . . . . . . . . . . . 13 (((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0) → ⟨(1st𝑘), (2nd𝑘)⟩ = ⟨0, (𝑃 − 1)⟩)
185184adantl 481 . . . . . . . . . . . 12 ((𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∧ ((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0)) → ⟨(1st𝑘), (2nd𝑘)⟩ = ⟨0, (𝑃 − 1)⟩)
186181, 185eqtrd 2644 . . . . . . . . . . 11 ((𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∧ ((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0)) → 𝑘 = ⟨0, (𝑃 − 1)⟩)
187 velsn 4141 . . . . . . . . . . 11 (𝑘 ∈ {⟨0, (𝑃 − 1)⟩} ↔ 𝑘 = ⟨0, (𝑃 − 1)⟩)
188186, 187sylibr 223 . . . . . . . . . 10 ((𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) ∧ ((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0)) → 𝑘 ∈ {⟨0, (𝑃 − 1)⟩})
189178, 188mtand 689 . . . . . . . . 9 (𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩}) → ¬ ((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0))
190189adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → ¬ ((2nd𝑘) = (𝑃 − 1) ∧ (1st𝑘) = 0))
191128, 129, 30, 131, 132, 190, 108etransclem38 39165 . . . . . . 7 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))))
192 dvdsmultr2 14859 . . . . . . 7 ((𝑃 ∈ ℤ ∧ (𝐴‘(1st𝑘)) ∈ ℤ ∧ ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))) ∈ ℤ) → (𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))) → 𝑃 ∥ ((𝐴‘(1st𝑘)) · ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1))))))
193177, 191, 192sylc 63 . . . . . 6 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → 𝑃 ∥ ((𝐴‘(1st𝑘)) · ((((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) / (!‘(𝑃 − 1)))))
194193, 124breqtrrd 4611 . . . . 5 ((𝜑𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})) → 𝑃 ∥ (((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
19593, 46, 140, 194fsumdvds 14868 . . . 4 (𝜑𝑃 ∥ Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})(((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
196195, 117breqtrrd 4611 . . 3 (𝜑𝑃 ∥ (Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
19746, 103, 115, 142, 175, 196etransclem9 39136 . 2 (𝜑 → ((((𝐴‘0) · (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0)) / (!‘(𝑃 − 1))) + (Σ𝑘 ∈ (((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∖ {⟨0, (𝑃 − 1)⟩})((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))) ≠ 0)
198102, 197eqnetrd 2849 1 (𝜑𝐾 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  {crab 2900  Vcvv 3173  cdif 3537  wss 3540  ifcif 4036  {csn 4125  {cpr 4127  cop 4131   class class class wbr 4583  cmpt 4643   × cxp 5036  ran crn 5039  wf 5800  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  𝑚 cmap 7744  Fincfn 7841  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  0cn0 11169  cz 11254  cuz 11563  (,)cioo 12046  ...cfz 12197  cexp 12722  !cfa 12922  abscabs 13822  Σcsu 14264  cprod 14474  cdvds 14821  cprime 15223  t crest 15904  TopOpenctopn 15905  topGenctg 15921  fldccnfld 19567   D𝑛 cdvn 23434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-prod 14475  df-dvds 14822  df-gcd 15055  df-prm 15224  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-dvn 23438
This theorem is referenced by:  etransclem47  39174
  Copyright terms: Public domain W3C validator