Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem5 Structured version   Visualization version   GIF version

Theorem etransclem5 39132
 Description: A change of bound variable, often used in proofs for etransc 39176. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Assertion
Ref Expression
etransclem5 (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
Distinct variable groups:   𝑗,𝑀,𝑘   𝑃,𝑗,𝑘,𝑥,𝑦   𝑗,𝑋,𝑘,𝑥,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦)

Proof of Theorem etransclem5
StepHypRef Expression
1 oveq1 6556 . . . . 5 (𝑥 = 𝑦 → (𝑥𝑗) = (𝑦𝑗))
21oveq1d 6564 . . . 4 (𝑥 = 𝑦 → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
32cbvmptv 4678 . . 3 (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑦𝑋 ↦ ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
4 oveq2 6557 . . . . 5 (𝑗 = 𝑘 → (𝑦𝑗) = (𝑦𝑘))
5 eqeq1 2614 . . . . . 6 (𝑗 = 𝑘 → (𝑗 = 0 ↔ 𝑘 = 0))
65ifbid 4058 . . . . 5 (𝑗 = 𝑘 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = if(𝑘 = 0, (𝑃 − 1), 𝑃))
74, 6oveq12d 6567 . . . 4 (𝑗 = 𝑘 → ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))
87mpteq2dv 4673 . . 3 (𝑗 = 𝑘 → (𝑦𝑋 ↦ ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
93, 8syl5eq 2656 . 2 (𝑗 = 𝑘 → (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
109cbvmptv 4678 1 (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475  ifcif 4036   ↦ cmpt 4643  (class class class)co 6549  0cc0 9815  1c1 9816   − cmin 10145  ...cfz 12197  ↑cexp 12722 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-iota 5768  df-fv 5812  df-ov 6552 This theorem is referenced by:  etransclem27  39154  etransclem29  39156  etransclem31  39158  etransclem32  39159  etransclem33  39160  etransclem34  39161  etransclem35  39162  etransclem38  39165  etransclem40  39167  etransclem42  39169  etransclem44  39171  etransclem45  39172  etransclem46  39173
 Copyright terms: Public domain W3C validator