Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumrnmpt2 Structured version   Visualization version   GIF version

Theorem esumrnmpt2 29457
Description: Rewrite an extended sum into a sum on the range of a mapping function. (Contributed by Thierry Arnoux, 30-May-2020.)
Hypotheses
Ref Expression
esumrnmpt2.1 (𝑦 = 𝐵𝐶 = 𝐷)
esumrnmpt2.2 (𝜑𝐴𝑉)
esumrnmpt2.3 ((𝜑𝑘𝐴) → 𝐷 ∈ (0[,]+∞))
esumrnmpt2.4 ((𝜑𝑘𝐴) → 𝐵𝑊)
esumrnmpt2.5 (((𝜑𝑘𝐴) ∧ 𝐵 = ∅) → 𝐷 = 0)
esumrnmpt2.6 (𝜑Disj 𝑘𝐴 𝐵)
Assertion
Ref Expression
esumrnmpt2 (𝜑 → Σ*𝑦 ∈ ran (𝑘𝐴𝐵)𝐶 = Σ*𝑘𝐴𝐷)
Distinct variable groups:   𝐴,𝑘,𝑦   𝑦,𝐵   𝐶,𝑘   𝑦,𝐷   𝑘,𝑊   𝜑,𝑘,𝑦
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑦)   𝐷(𝑘)   𝑉(𝑦,𝑘)   𝑊(𝑦)

Proof of Theorem esumrnmpt2
StepHypRef Expression
1 nfrab1 3099 . . . . 5 𝑘{𝑘𝐴 ∣ ¬ 𝐵 = ∅}
2 esumrnmpt2.1 . . . . 5 (𝑦 = 𝐵𝐶 = 𝐷)
3 esumrnmpt2.2 . . . . . 6 (𝜑𝐴𝑉)
4 ssrab2 3650 . . . . . . 7 {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ⊆ 𝐴
54a1i 11 . . . . . 6 (𝜑 → {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ⊆ 𝐴)
63, 5ssexd 4733 . . . . 5 (𝜑 → {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ∈ V)
75sselda 3568 . . . . . 6 ((𝜑𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) → 𝑘𝐴)
8 esumrnmpt2.3 . . . . . 6 ((𝜑𝑘𝐴) → 𝐷 ∈ (0[,]+∞))
97, 8syldan 486 . . . . 5 ((𝜑𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) → 𝐷 ∈ (0[,]+∞))
10 esumrnmpt2.4 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵𝑊)
117, 10syldan 486 . . . . . 6 ((𝜑𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) → 𝐵𝑊)
12 rabid 3095 . . . . . . . . 9 (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↔ (𝑘𝐴 ∧ ¬ 𝐵 = ∅))
1312simprbi 479 . . . . . . . 8 (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} → ¬ 𝐵 = ∅)
1413adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) → ¬ 𝐵 = ∅)
15 elsng 4139 . . . . . . . 8 (𝐵𝑊 → (𝐵 ∈ {∅} ↔ 𝐵 = ∅))
1611, 15syl 17 . . . . . . 7 ((𝜑𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) → (𝐵 ∈ {∅} ↔ 𝐵 = ∅))
1714, 16mtbird 314 . . . . . 6 ((𝜑𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) → ¬ 𝐵 ∈ {∅})
1811, 17eldifd 3551 . . . . 5 ((𝜑𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) → 𝐵 ∈ (𝑊 ∖ {∅}))
19 esumrnmpt2.6 . . . . . 6 (𝜑Disj 𝑘𝐴 𝐵)
20 nfcv 2751 . . . . . . 7 𝑘𝐴
211, 20disjss1f 28768 . . . . . 6 ({𝑘𝐴 ∣ ¬ 𝐵 = ∅} ⊆ 𝐴 → (Disj 𝑘𝐴 𝐵Disj 𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐵))
225, 19, 21sylc 63 . . . . 5 (𝜑Disj 𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐵)
231, 2, 6, 9, 18, 22esumrnmpt 29441 . . . 4 (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶 = Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷)
24 nfv 1830 . . . . . . . . . . 11 𝑦(𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅)
25 snex 4835 . . . . . . . . . . . 12 {∅} ∈ V
2625a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) → {∅} ∈ V)
27 velsn 4141 . . . . . . . . . . . . . . 15 (𝑦 ∈ {∅} ↔ 𝑦 = ∅)
2827biimpi 205 . . . . . . . . . . . . . 14 (𝑦 ∈ {∅} → 𝑦 = ∅)
2928adantl 481 . . . . . . . . . . . . 13 (((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 ∈ {∅}) → 𝑦 = ∅)
30 nfv 1830 . . . . . . . . . . . . . . . 16 𝑘𝜑
31 nfre1 2988 . . . . . . . . . . . . . . . 16 𝑘𝑘𝐴 𝐵 = ∅
3230, 31nfan 1816 . . . . . . . . . . . . . . 15 𝑘(𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅)
33 nfv 1830 . . . . . . . . . . . . . . 15 𝑘 𝑦 = ∅
3432, 33nfan 1816 . . . . . . . . . . . . . 14 𝑘((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅)
35 nfv 1830 . . . . . . . . . . . . . 14 𝑘 𝐶 = 0
36 simpllr 795 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘𝐴) ∧ 𝐵 = ∅) → 𝑦 = ∅)
37 simpr 476 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘𝐴) ∧ 𝐵 = ∅) → 𝐵 = ∅)
3836, 37eqtr4d 2647 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘𝐴) ∧ 𝐵 = ∅) → 𝑦 = 𝐵)
3938, 2syl 17 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘𝐴) ∧ 𝐵 = ∅) → 𝐶 = 𝐷)
40 simp-4l 802 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘𝐴) ∧ 𝐵 = ∅) → 𝜑)
41 simplr 788 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘𝐴) ∧ 𝐵 = ∅) → 𝑘𝐴)
42 esumrnmpt2.5 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝐴) ∧ 𝐵 = ∅) → 𝐷 = 0)
4340, 41, 37, 42syl21anc 1317 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘𝐴) ∧ 𝐵 = ∅) → 𝐷 = 0)
4439, 43eqtrd 2644 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘𝐴) ∧ 𝐵 = ∅) → 𝐶 = 0)
45 simplr 788 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) → ∃𝑘𝐴 𝐵 = ∅)
4634, 35, 44, 45r19.29af2 3057 . . . . . . . . . . . . 13 (((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) → 𝐶 = 0)
4729, 46syldan 486 . . . . . . . . . . . 12 (((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 ∈ {∅}) → 𝐶 = 0)
48 0e0iccpnf 12154 . . . . . . . . . . . 12 0 ∈ (0[,]+∞)
4947, 48syl6eqel 2696 . . . . . . . . . . 11 (((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 ∈ {∅}) → 𝐶 ∈ (0[,]+∞))
50 nfcv 2751 . . . . . . . . . . . . . . . . 17 𝑘𝑦
51 nfmpt1 4675 . . . . . . . . . . . . . . . . . 18 𝑘(𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)
5251nfrn 5289 . . . . . . . . . . . . . . . . 17 𝑘ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)
5350, 52nfel 2763 . . . . . . . . . . . . . . . 16 𝑘 𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)
5430, 53nfan 1816 . . . . . . . . . . . . . . 15 𝑘(𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵))
55 simpr 476 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵)
56 rabid 3095 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↔ (𝑘𝐴𝐵 = ∅))
5756simprbi 479 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ {𝑘𝐴𝐵 = ∅} → 𝐵 = ∅)
5857ad2antlr 759 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐵 = ∅)
5955, 58eqtrd 2644 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝑦 = ∅)
6059, 27sylibr 223 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝑦 ∈ {∅})
61 vex 3176 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
62 eqid 2610 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) = (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)
6362elrnmpt 5293 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ V → (𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝑦 = 𝐵))
6461, 63ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝑦 = 𝐵)
6564biimpi 205 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) → ∃𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝑦 = 𝐵)
6665adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) → ∃𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝑦 = 𝐵)
6754, 60, 66r19.29af 3058 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) → 𝑦 ∈ {∅})
6867ex 449 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) → 𝑦 ∈ {∅}))
6968ssrdv 3574 . . . . . . . . . . . 12 (𝜑 → ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ⊆ {∅})
7069adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) → ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ⊆ {∅})
7124, 26, 49, 70esummono 29443 . . . . . . . . . 10 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ≤ Σ*𝑦 ∈ {∅}𝐶)
72 0ex 4718 . . . . . . . . . . . 12 ∅ ∈ V
7372a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) → ∅ ∈ V)
7448a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) → 0 ∈ (0[,]+∞))
7546, 73, 74esumsn 29454 . . . . . . . . . 10 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) → Σ*𝑦 ∈ {∅}𝐶 = 0)
7671, 75breqtrd 4609 . . . . . . . . 9 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0)
77 simpr 476 . . . . . . . . . 10 ((𝜑 ∧ ¬ ∃𝑘𝐴 𝐵 = ∅) → ¬ ∃𝑘𝐴 𝐵 = ∅)
78 nfv 1830 . . . . . . . . . . . . 13 𝑦 ¬ ∃𝑘𝐴 𝐵 = ∅
7931nfn 1768 . . . . . . . . . . . . . . . . 17 𝑘 ¬ ∃𝑘𝐴 𝐵 = ∅
80 nfrab1 3099 . . . . . . . . . . . . . . . . 17 𝑘{𝑘𝐴𝐵 = ∅}
81 nfcv 2751 . . . . . . . . . . . . . . . . 17 𝑘
82 rabn0 3912 . . . . . . . . . . . . . . . . . . 19 ({𝑘𝐴𝐵 = ∅} ≠ ∅ ↔ ∃𝑘𝐴 𝐵 = ∅)
8382biimpi 205 . . . . . . . . . . . . . . . . . 18 ({𝑘𝐴𝐵 = ∅} ≠ ∅ → ∃𝑘𝐴 𝐵 = ∅)
8483necon1bi 2810 . . . . . . . . . . . . . . . . 17 (¬ ∃𝑘𝐴 𝐵 = ∅ → {𝑘𝐴𝐵 = ∅} = ∅)
85 eqid 2610 . . . . . . . . . . . . . . . . . 18 𝐵 = 𝐵
8685a1i 11 . . . . . . . . . . . . . . . . 17 (¬ ∃𝑘𝐴 𝐵 = ∅ → 𝐵 = 𝐵)
8779, 80, 81, 84, 86mpteq12df 28837 . . . . . . . . . . . . . . . 16 (¬ ∃𝑘𝐴 𝐵 = ∅ → (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) = (𝑘 ∈ ∅ ↦ 𝐵))
88 mpt0 5934 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ∅ ↦ 𝐵) = ∅
8987, 88syl6eq 2660 . . . . . . . . . . . . . . 15 (¬ ∃𝑘𝐴 𝐵 = ∅ → (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) = ∅)
9089rneqd 5274 . . . . . . . . . . . . . 14 (¬ ∃𝑘𝐴 𝐵 = ∅ → ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) = ran ∅)
91 rn0 5298 . . . . . . . . . . . . . 14 ran ∅ = ∅
9290, 91syl6eq 2660 . . . . . . . . . . . . 13 (¬ ∃𝑘𝐴 𝐵 = ∅ → ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) = ∅)
9378, 92esumeq1d 29424 . . . . . . . . . . . 12 (¬ ∃𝑘𝐴 𝐵 = ∅ → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 = Σ*𝑦 ∈ ∅𝐶)
94 esumnul 29437 . . . . . . . . . . . 12 Σ*𝑦 ∈ ∅𝐶 = 0
9593, 94syl6eq 2660 . . . . . . . . . . 11 (¬ ∃𝑘𝐴 𝐵 = ∅ → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 = 0)
96 0le0 10987 . . . . . . . . . . 11 0 ≤ 0
9795, 96syl6eqbr 4622 . . . . . . . . . 10 (¬ ∃𝑘𝐴 𝐵 = ∅ → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0)
9877, 97syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ ∃𝑘𝐴 𝐵 = ∅) → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0)
9976, 98pm2.61dan 828 . . . . . . . 8 (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0)
100 ssrab2 3650 . . . . . . . . . . . . 13 {𝑘𝐴𝐵 = ∅} ⊆ 𝐴
101100a1i 11 . . . . . . . . . . . 12 (𝜑 → {𝑘𝐴𝐵 = ∅} ⊆ 𝐴)
1023, 101ssexd 4733 . . . . . . . . . . 11 (𝜑 → {𝑘𝐴𝐵 = ∅} ∈ V)
10380mptexgf 28809 . . . . . . . . . . 11 ({𝑘𝐴𝐵 = ∅} ∈ V → (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∈ V)
104 rnexg 6990 . . . . . . . . . . 11 ((𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∈ V → ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∈ V)
105102, 103, 1043syl 18 . . . . . . . . . 10 (𝜑 → ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∈ V)
1062adantl 481 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷)
107 simplll 794 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝜑)
108101sselda 3568 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ {𝑘𝐴𝐵 = ∅}) → 𝑘𝐴)
109108adantlr 747 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴𝐵 = ∅}) → 𝑘𝐴)
110109adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝑘𝐴)
111107, 110, 8syl2anc 691 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐷 ∈ (0[,]+∞))
112106, 111eqeltrd 2688 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐶 ∈ (0[,]+∞))
11354, 112, 66r19.29af 3058 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) → 𝐶 ∈ (0[,]+∞))
114113ralrimiva 2949 . . . . . . . . . 10 (𝜑 → ∀𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞))
115 nfcv 2751 . . . . . . . . . . 11 𝑦ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)
116115esumcl 29419 . . . . . . . . . 10 ((ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∈ V ∧ ∀𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞)) → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞))
117105, 114, 116syl2anc 691 . . . . . . . . 9 (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞))
118 elxrge0 12152 . . . . . . . . . 10 *𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞) ↔ (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ∈ ℝ* ∧ 0 ≤ Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶))
119118simprbi 479 . . . . . . . . 9 *𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞) → 0 ≤ Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶)
120117, 119syl 17 . . . . . . . 8 (𝜑 → 0 ≤ Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶)
12199, 120jca 553 . . . . . . 7 (𝜑 → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0 ∧ 0 ≤ Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶))
122 iccssxr 12127 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
123122, 117sseldi 3566 . . . . . . . 8 (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ∈ ℝ*)
124122, 48sselii 3565 . . . . . . . . 9 0 ∈ ℝ*
125124a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ ℝ*)
126 xrletri3 11861 . . . . . . . 8 ((Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ∈ ℝ* ∧ 0 ∈ ℝ*) → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 = 0 ↔ (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0 ∧ 0 ≤ Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶)))
127123, 125, 126syl2anc 691 . . . . . . 7 (𝜑 → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 = 0 ↔ (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0 ∧ 0 ≤ Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶)))
128121, 127mpbird 246 . . . . . 6 (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 = 0)
129128oveq1d 6564 . . . . 5 (𝜑 → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 +𝑒 Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) = (0 +𝑒 Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶))
1309ralrimiva 2949 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ (0[,]+∞))
1311esumcl 29419 . . . . . . . . 9 (({𝑘𝐴 ∣ ¬ 𝐵 = ∅} ∈ V ∧ ∀𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ (0[,]+∞)) → Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ (0[,]+∞))
1326, 130, 131syl2anc 691 . . . . . . . 8 (𝜑 → Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ (0[,]+∞))
133122, 132sseldi 3566 . . . . . . 7 (𝜑 → Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ ℝ*)
13423, 133eqeltrd 2688 . . . . . 6 (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ ℝ*)
135 xaddid2 11947 . . . . . 6 *𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ ℝ* → (0 +𝑒 Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) = Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶)
136134, 135syl 17 . . . . 5 (𝜑 → (0 +𝑒 Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) = Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶)
137129, 136eqtrd 2644 . . . 4 (𝜑 → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 +𝑒 Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) = Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶)
138 simpl 472 . . . . . . . . . 10 ((𝜑𝑘 ∈ {𝑘𝐴𝐵 = ∅}) → 𝜑)
13957adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ {𝑘𝐴𝐵 = ∅}) → 𝐵 = ∅)
140138, 108, 139, 42syl21anc 1317 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑘𝐴𝐵 = ∅}) → 𝐷 = 0)
141140ralrimiva 2949 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝐷 = 0)
14230, 141esumeq2d 29426 . . . . . . 7 (𝜑 → Σ*𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝐷 = Σ*𝑘 ∈ {𝑘𝐴𝐵 = ∅}0)
14380esum0 29438 . . . . . . . 8 ({𝑘𝐴𝐵 = ∅} ∈ V → Σ*𝑘 ∈ {𝑘𝐴𝐵 = ∅}0 = 0)
144102, 143syl 17 . . . . . . 7 (𝜑 → Σ*𝑘 ∈ {𝑘𝐴𝐵 = ∅}0 = 0)
145142, 144eqtrd 2644 . . . . . 6 (𝜑 → Σ*𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝐷 = 0)
146145oveq1d 6564 . . . . 5 (𝜑 → (Σ*𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝐷 +𝑒 Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷) = (0 +𝑒 Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷))
147 xaddid2 11947 . . . . . 6 *𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ ℝ* → (0 +𝑒 Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷) = Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷)
148133, 147syl 17 . . . . 5 (𝜑 → (0 +𝑒 Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷) = Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷)
149146, 148eqtrd 2644 . . . 4 (𝜑 → (Σ*𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝐷 +𝑒 Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷) = Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷)
15023, 137, 1493eqtr4d 2654 . . 3 (𝜑 → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 +𝑒 Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) = (Σ*𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝐷 +𝑒 Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷))
151 nfv 1830 . . . 4 𝑦𝜑
152 nfcv 2751 . . . 4 𝑦ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)
1531mptexgf 28809 . . . . 5 ({𝑘𝐴 ∣ ¬ 𝐵 = ∅} ∈ V → (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∈ V)
154 rnexg 6990 . . . . 5 ((𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∈ V → ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∈ V)
1556, 153, 1543syl 18 . . . 4 (𝜑 → ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∈ V)
156 ssrin 3800 . . . . . . 7 (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ⊆ {∅} → (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ⊆ ({∅} ∩ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)))
15769, 156syl 17 . . . . . 6 (𝜑 → (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ⊆ ({∅} ∩ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)))
158 incom 3767 . . . . . . 7 (ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∩ {∅}) = ({∅} ∩ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))
15913neqned 2789 . . . . . . . . . . . 12 (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} → 𝐵 ≠ ∅)
160159necomd 2837 . . . . . . . . . . 11 (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} → ∅ ≠ 𝐵)
161160neneqd 2787 . . . . . . . . . 10 (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} → ¬ ∅ = 𝐵)
162161nrex 2983 . . . . . . . . 9 ¬ ∃𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}∅ = 𝐵
163 eqid 2610 . . . . . . . . . . 11 (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) = (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)
164163elrnmpt 5293 . . . . . . . . . 10 (∅ ∈ V → (∅ ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}∅ = 𝐵))
16572, 164ax-mp 5 . . . . . . . . 9 (∅ ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}∅ = 𝐵)
166162, 165mtbir 312 . . . . . . . 8 ¬ ∅ ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)
167 disjsn 4192 . . . . . . . 8 ((ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))
168166, 167mpbir 220 . . . . . . 7 (ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∩ {∅}) = ∅
169158, 168eqtr3i 2634 . . . . . 6 ({∅} ∩ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) = ∅
170157, 169syl6sseq 3614 . . . . 5 (𝜑 → (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ⊆ ∅)
171 ss0 3926 . . . . 5 ((ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ⊆ ∅ → (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) = ∅)
172170, 171syl 17 . . . 4 (𝜑 → (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) = ∅)
173 nfmpt1 4675 . . . . . . . 8 𝑘(𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)
174173nfrn 5289 . . . . . . 7 𝑘ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)
17550, 174nfel 2763 . . . . . 6 𝑘 𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)
17630, 175nfan 1816 . . . . 5 𝑘(𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))
1772adantl 481 . . . . . 6 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷)
178 simplll 794 . . . . . . 7 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝜑)
1797adantlr 747 . . . . . . . 8 (((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) → 𝑘𝐴)
180179adantr 480 . . . . . . 7 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝑘𝐴)
181178, 180, 8syl2anc 691 . . . . . 6 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐷 ∈ (0[,]+∞))
182177, 181eqeltrd 2688 . . . . 5 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐶 ∈ (0[,]+∞))
183163elrnmpt 5293 . . . . . . . 8 (𝑦 ∈ V → (𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝑦 = 𝐵))
18461, 183ax-mp 5 . . . . . . 7 (𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝑦 = 𝐵)
185184biimpi 205 . . . . . 6 (𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) → ∃𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝑦 = 𝐵)
186185adantl 481 . . . . 5 ((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) → ∃𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝑦 = 𝐵)
187176, 182, 186r19.29af 3058 . . . 4 ((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) → 𝐶 ∈ (0[,]+∞))
188151, 115, 152, 105, 155, 172, 113, 187esumsplit 29442 . . 3 (𝜑 → Σ*𝑦 ∈ (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))𝐶 = (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 +𝑒 Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶))
189 rabnc 3916 . . . . 5 ({𝑘𝐴𝐵 = ∅} ∩ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) = ∅
190189a1i 11 . . . 4 (𝜑 → ({𝑘𝐴𝐵 = ∅} ∩ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) = ∅)
191108, 8syldan 486 . . . 4 ((𝜑𝑘 ∈ {𝑘𝐴𝐵 = ∅}) → 𝐷 ∈ (0[,]+∞))
19230, 80, 1, 102, 6, 190, 191, 9esumsplit 29442 . . 3 (𝜑 → Σ*𝑘 ∈ ({𝑘𝐴𝐵 = ∅} ∪ {𝑘𝐴 ∣ ¬ 𝐵 = ∅})𝐷 = (Σ*𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝐷 +𝑒 Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷))
193150, 188, 1923eqtr4d 2654 . 2 (𝜑 → Σ*𝑦 ∈ (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))𝐶 = Σ*𝑘 ∈ ({𝑘𝐴𝐵 = ∅} ∪ {𝑘𝐴 ∣ ¬ 𝐵 = ∅})𝐷)
194 rabxm 3915 . . . . . . . 8 𝐴 = ({𝑘𝐴𝐵 = ∅} ∪ {𝑘𝐴 ∣ ¬ 𝐵 = ∅})
195194, 85mpteq12i 4670 . . . . . . 7 (𝑘𝐴𝐵) = (𝑘 ∈ ({𝑘𝐴𝐵 = ∅} ∪ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) ↦ 𝐵)
196 mptun 5938 . . . . . . 7 (𝑘 ∈ ({𝑘𝐴𝐵 = ∅} ∪ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) ↦ 𝐵) = ((𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∪ (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))
197195, 196eqtri 2632 . . . . . 6 (𝑘𝐴𝐵) = ((𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∪ (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))
198197rneqi 5273 . . . . 5 ran (𝑘𝐴𝐵) = ran ((𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∪ (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))
199 rnun 5460 . . . . 5 ran ((𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∪ (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) = (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))
200198, 199eqtri 2632 . . . 4 ran (𝑘𝐴𝐵) = (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))
201200a1i 11 . . 3 (𝜑 → ran (𝑘𝐴𝐵) = (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)))
202151, 201esumeq1d 29424 . 2 (𝜑 → Σ*𝑦 ∈ ran (𝑘𝐴𝐵)𝐶 = Σ*𝑦 ∈ (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))𝐶)
203194a1i 11 . . 3 (𝜑𝐴 = ({𝑘𝐴𝐵 = ∅} ∪ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}))
20430, 203esumeq1d 29424 . 2 (𝜑 → Σ*𝑘𝐴𝐷 = Σ*𝑘 ∈ ({𝑘𝐴𝐵 = ∅} ∪ {𝑘𝐴 ∣ ¬ 𝐵 = ∅})𝐷)
205193, 202, 2043eqtr4d 2654 1 (𝜑 → Σ*𝑦 ∈ ran (𝑘𝐴𝐵)𝐶 = Σ*𝑘𝐴𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cun 3538  cin 3539  wss 3540  c0 3874  {csn 4125  Disj wdisj 4553   class class class wbr 4583  cmpt 4643  ran crn 5039  (class class class)co 6549  0cc0 9815  +∞cpnf 9950  *cxr 9952  cle 9954   +𝑒 cxad 11820  [,]cicc 12049  Σ*cesum 29416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-ordt 15984  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-ps 17023  df-tsr 17024  df-plusf 17064  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-subrg 18601  df-abv 18640  df-lmod 18688  df-scaf 18689  df-sra 18993  df-rgmod 18994  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-tmd 21686  df-tgp 21687  df-tsms 21740  df-trg 21773  df-xms 21935  df-ms 21936  df-tms 21937  df-nm 22197  df-ngp 22198  df-nrg 22200  df-nlm 22201  df-ii 22488  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-esum 29417
This theorem is referenced by:  carsggect  29707  carsgclctunlem2  29708  pmeasadd  29714
  Copyright terms: Public domain W3C validator