Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgclctunlem2 Structured version   Visualization version   GIF version

Theorem carsgclctunlem2 29708
Description: Lemma for carsgclctun 29710. (Contributed by Thierry Arnoux, 25-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
carsgsiga.3 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
carsgclctunlem2.1 (𝜑Disj 𝑘 ∈ ℕ 𝐴)
carsgclctunlem2.2 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (toCaraSiga‘𝑀))
carsgclctunlem2.3 (𝜑𝐸 ∈ 𝒫 𝑂)
carsgclctunlem2.4 (𝜑 → (𝑀𝐸) ≠ +∞)
Assertion
Ref Expression
carsgclctunlem2 (𝜑 → ((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ≤ (𝑀𝐸))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐸,𝑦   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦,𝑘   𝑘,𝐸   𝑘,𝑀   𝑘,𝑂   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝑉(𝑥,𝑦,𝑘)

Proof of Theorem carsgclctunlem2
Dummy variables 𝑒 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunin2 4520 . . . . 5 𝑘 ∈ ℕ (𝐸𝐴) = (𝐸 𝑘 ∈ ℕ 𝐴)
21fveq2i 6106 . . . 4 (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) = (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))
3 iccssxr 12127 . . . . 5 (0[,]+∞) ⊆ ℝ*
4 carsgval.2 . . . . . 6 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
5 nnex 10903 . . . . . . . 8 ℕ ∈ V
65a1i 11 . . . . . . 7 (𝜑 → ℕ ∈ V)
7 carsgclctunlem2.3 . . . . . . . . 9 (𝜑𝐸 ∈ 𝒫 𝑂)
87adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐸 ∈ 𝒫 𝑂)
98elpwincl1 28741 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐸𝐴) ∈ 𝒫 𝑂)
106, 9elpwiuncl 28743 . . . . . 6 (𝜑 𝑘 ∈ ℕ (𝐸𝐴) ∈ 𝒫 𝑂)
114, 10ffvelrnd 6268 . . . . 5 (𝜑 → (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) ∈ (0[,]+∞))
123, 11sseldi 3566 . . . 4 (𝜑 → (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) ∈ ℝ*)
132, 12syl5eqelr 2693 . . 3 (𝜑 → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ*)
144, 7ffvelrnd 6268 . . . . 5 (𝜑 → (𝑀𝐸) ∈ (0[,]+∞))
153, 14sseldi 3566 . . . 4 (𝜑 → (𝑀𝐸) ∈ ℝ*)
167elpwdifcl 28742 . . . . . . 7 (𝜑 → (𝐸 𝑘 ∈ ℕ 𝐴) ∈ 𝒫 𝑂)
174, 16ffvelrnd 6268 . . . . . 6 (𝜑 → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ (0[,]+∞))
183, 17sseldi 3566 . . . . 5 (𝜑 → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ*)
1918xnegcld 12002 . . . 4 (𝜑 → -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ*)
2015, 19xaddcld 12003 . . 3 (𝜑 → ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ∈ ℝ*)
214adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
2221, 9ffvelrnd 6268 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑀‘(𝐸𝐴)) ∈ (0[,]+∞))
2322ralrimiva 2949 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ (𝑀‘(𝐸𝐴)) ∈ (0[,]+∞))
24 nfcv 2751 . . . . . . . 8 𝑘
2524esumcl 29419 . . . . . . 7 ((ℕ ∈ V ∧ ∀𝑘 ∈ ℕ (𝑀‘(𝐸𝐴)) ∈ (0[,]+∞)) → Σ*𝑘 ∈ ℕ(𝑀‘(𝐸𝐴)) ∈ (0[,]+∞))
266, 23, 25syl2anc 691 . . . . . 6 (𝜑 → Σ*𝑘 ∈ ℕ(𝑀‘(𝐸𝐴)) ∈ (0[,]+∞))
273, 26sseldi 3566 . . . . 5 (𝜑 → Σ*𝑘 ∈ ℕ(𝑀‘(𝐸𝐴)) ∈ ℝ*)
289ralrimiva 2949 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ ℕ (𝐸𝐴) ∈ 𝒫 𝑂)
29 dfiun3g 5299 . . . . . . . . 9 (∀𝑘 ∈ ℕ (𝐸𝐴) ∈ 𝒫 𝑂 𝑘 ∈ ℕ (𝐸𝐴) = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)))
3028, 29syl 17 . . . . . . . 8 (𝜑 𝑘 ∈ ℕ (𝐸𝐴) = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)))
3130fveq2d 6107 . . . . . . 7 (𝜑 → (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) = (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))))
32 nnct 12642 . . . . . . . . . 10 ℕ ≼ ω
33 mptct 28880 . . . . . . . . . 10 (ℕ ≼ ω → (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω)
34 rnct 28879 . . . . . . . . . 10 ((𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω → ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω)
3532, 33, 34mp2b 10 . . . . . . . . 9 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω
3635a1i 11 . . . . . . . 8 (𝜑 → ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω)
37 eqid 2610 . . . . . . . . . 10 (𝑘 ∈ ℕ ↦ (𝐸𝐴)) = (𝑘 ∈ ℕ ↦ (𝐸𝐴))
3837rnmptss 6299 . . . . . . . . 9 (∀𝑘 ∈ ℕ (𝐸𝐴) ∈ 𝒫 𝑂 → ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂)
3928, 38syl 17 . . . . . . . 8 (𝜑 → ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂)
40 mptexg 6389 . . . . . . . . . 10 (ℕ ∈ V → (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ∈ V)
41 rnexg 6990 . . . . . . . . . 10 ((𝑘 ∈ ℕ ↦ (𝐸𝐴)) ∈ V → ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ∈ V)
425, 40, 41mp2b 10 . . . . . . . . 9 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ∈ V
43 breq1 4586 . . . . . . . . . . . 12 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → (𝑥 ≼ ω ↔ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω))
44 sseq1 3589 . . . . . . . . . . . 12 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → (𝑥 ⊆ 𝒫 𝑂 ↔ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂))
4543, 443anbi23d 1394 . . . . . . . . . . 11 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) ↔ (𝜑 ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂)))
46 unieq 4380 . . . . . . . . . . . . 13 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → 𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)))
4746fveq2d 6107 . . . . . . . . . . . 12 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → (𝑀 𝑥) = (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))))
48 esumeq1 29423 . . . . . . . . . . . 12 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → Σ*𝑦𝑥(𝑀𝑦) = Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦))
4947, 48breq12d 4596 . . . . . . . . . . 11 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → ((𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦) ↔ (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))) ≤ Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦)))
5045, 49imbi12d 333 . . . . . . . . . 10 (𝑥 = ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) → (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦)) ↔ ((𝜑 ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂) → (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))) ≤ Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦))))
51 carsgsiga.2 . . . . . . . . . 10 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
5250, 51vtoclg 3239 . . . . . . . . 9 (ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ∈ V → ((𝜑 ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂) → (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))) ≤ Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦)))
5342, 52ax-mp 5 . . . . . . . 8 ((𝜑 ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ≼ ω ∧ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴)) ⊆ 𝒫 𝑂) → (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))) ≤ Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦))
5436, 39, 53mpd3an23 1418 . . . . . . 7 (𝜑 → (𝑀 ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))) ≤ Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦))
5531, 54eqbrtrd 4605 . . . . . 6 (𝜑 → (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) ≤ Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦))
56 fveq2 6103 . . . . . . 7 (𝑦 = (𝐸𝐴) → (𝑀𝑦) = (𝑀‘(𝐸𝐴)))
57 simpr 476 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (𝐸𝐴) = ∅) → (𝐸𝐴) = ∅)
5857fveq2d 6107 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (𝐸𝐴) = ∅) → (𝑀‘(𝐸𝐴)) = (𝑀‘∅))
59 carsgsiga.1 . . . . . . . . 9 (𝜑 → (𝑀‘∅) = 0)
6059ad2antrr 758 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (𝐸𝐴) = ∅) → (𝑀‘∅) = 0)
6158, 60eqtrd 2644 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ (𝐸𝐴) = ∅) → (𝑀‘(𝐸𝐴)) = 0)
62 carsgclctunlem2.1 . . . . . . . . 9 (𝜑Disj 𝑘 ∈ ℕ 𝐴)
63 disjin 28781 . . . . . . . . 9 (Disj 𝑘 ∈ ℕ 𝐴Disj 𝑘 ∈ ℕ (𝐴𝐸))
6462, 63syl 17 . . . . . . . 8 (𝜑Disj 𝑘 ∈ ℕ (𝐴𝐸))
65 incom 3767 . . . . . . . . . 10 (𝐴𝐸) = (𝐸𝐴)
6665rgenw 2908 . . . . . . . . 9 𝑘 ∈ ℕ (𝐴𝐸) = (𝐸𝐴)
67 disjeq2 4557 . . . . . . . . 9 (∀𝑘 ∈ ℕ (𝐴𝐸) = (𝐸𝐴) → (Disj 𝑘 ∈ ℕ (𝐴𝐸) ↔ Disj 𝑘 ∈ ℕ (𝐸𝐴)))
6866, 67ax-mp 5 . . . . . . . 8 (Disj 𝑘 ∈ ℕ (𝐴𝐸) ↔ Disj 𝑘 ∈ ℕ (𝐸𝐴))
6964, 68sylib 207 . . . . . . 7 (𝜑Disj 𝑘 ∈ ℕ (𝐸𝐴))
7056, 6, 22, 9, 61, 69esumrnmpt2 29457 . . . . . 6 (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ ℕ ↦ (𝐸𝐴))(𝑀𝑦) = Σ*𝑘 ∈ ℕ(𝑀‘(𝐸𝐴)))
7155, 70breqtrd 4609 . . . . 5 (𝜑 → (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) ≤ Σ*𝑘 ∈ ℕ(𝑀‘(𝐸𝐴)))
72 carsgval.1 . . . . . . . 8 (𝜑𝑂𝑉)
73 difssd 3700 . . . . . . . 8 (𝜑 → (𝐸 𝑘 ∈ ℕ 𝐴) ⊆ 𝐸)
74 carsgsiga.3 . . . . . . . 8 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
7572, 4, 73, 7, 74carsgmon 29703 . . . . . . 7 (𝜑 → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ (𝑀𝐸))
7614, 17, 75xrge0subcld 28918 . . . . . 6 (𝜑 → ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ∈ (0[,]+∞))
774adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
787adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝐸 ∈ 𝒫 𝑂)
7978elpwincl1 28741 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐸 𝑘 ∈ (1...𝑛)𝐴) ∈ 𝒫 𝑂)
8077, 79ffvelrnd 6268 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ (0[,]+∞))
813, 80sseldi 3566 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ*)
82 xrge0neqmnf 12147 . . . . . . . . . . 11 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ (0[,]+∞) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞)
8380, 82syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞)
8478elpwdifcl 28742 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐸 𝑘 ∈ (1...𝑛)𝐴) ∈ 𝒫 𝑂)
8577, 84ffvelrnd 6268 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ (0[,]+∞))
863, 85sseldi 3566 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ*)
87 xrge0neqmnf 12147 . . . . . . . . . . 11 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ (0[,]+∞) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞)
8885, 87syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞)
8986xnegcld 12002 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ*)
90 xnegneg 11919 . . . . . . . . . . . . . . . . 17 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* → -𝑒-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
9186, 90syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → -𝑒-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
9291adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → -𝑒-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
93 xnegeq 11912 . . . . . . . . . . . . . . . . 17 (-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞ → -𝑒-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -𝑒-∞)
9493adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → -𝑒-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -𝑒-∞)
95 xnegmnf 11915 . . . . . . . . . . . . . . . 16 -𝑒-∞ = +∞
9694, 95syl6eq 2660 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → -𝑒-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = +∞)
9792, 96eqtr3d 2646 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = +∞)
9897oveq2d 6565 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 +∞))
99 simpll 786 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝜑)
100 fz1ssnn 12243 . . . . . . . . . . . . . . . . . . . . . . 23 (1...𝑛) ⊆ ℕ
101100a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → (1...𝑛) ⊆ ℕ)
102101sselda 3568 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
103 carsgclctunlem2.2 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (toCaraSiga‘𝑀))
10499, 102, 103syl2anc 691 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ (toCaraSiga‘𝑀))
105104ralrimiva 2949 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (1...𝑛)𝐴 ∈ (toCaraSiga‘𝑀))
106 dfiun3g 5299 . . . . . . . . . . . . . . . . . . 19 (∀𝑘 ∈ (1...𝑛)𝐴 ∈ (toCaraSiga‘𝑀) → 𝑘 ∈ (1...𝑛)𝐴 = ran (𝑘 ∈ (1...𝑛) ↦ 𝐴))
107105, 106syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → 𝑘 ∈ (1...𝑛)𝐴 = ran (𝑘 ∈ (1...𝑛) ↦ 𝐴))
10872adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → 𝑂𝑉)
10959adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → (𝑀‘∅) = 0)
110513adant1r 1311 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
111 fzfi 12633 . . . . . . . . . . . . . . . . . . . . 21 (1...𝑛) ∈ Fin
112 mptfi 8148 . . . . . . . . . . . . . . . . . . . . 21 ((1...𝑛) ∈ Fin → (𝑘 ∈ (1...𝑛) ↦ 𝐴) ∈ Fin)
113 rnfi 8132 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ (1...𝑛) ↦ 𝐴) ∈ Fin → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ∈ Fin)
114111, 112, 113mp2b 10 . . . . . . . . . . . . . . . . . . . 20 ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ∈ Fin
115114a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ∈ Fin)
116 eqid 2610 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...𝑛) ↦ 𝐴) = (𝑘 ∈ (1...𝑛) ↦ 𝐴)
117116rnmptss 6299 . . . . . . . . . . . . . . . . . . . 20 (∀𝑘 ∈ (1...𝑛)𝐴 ∈ (toCaraSiga‘𝑀) → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ (toCaraSiga‘𝑀))
118105, 117syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ (toCaraSiga‘𝑀))
119108, 77, 109, 110, 115, 118fiunelcarsg 29705 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ) → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ∈ (toCaraSiga‘𝑀))
120107, 119eqeltrd 2688 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → 𝑘 ∈ (1...𝑛)𝐴 ∈ (toCaraSiga‘𝑀))
121108, 77elcarsg 29694 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ) → ( 𝑘 ∈ (1...𝑛)𝐴 ∈ (toCaraSiga‘𝑀) ↔ ( 𝑘 ∈ (1...𝑛)𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝑒))))
122120, 121mpbid 221 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → ( 𝑘 ∈ (1...𝑛)𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝑒)))
123122simprd 478 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝑒))
124 ineq1 3769 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝐸 → (𝑒 𝑘 ∈ (1...𝑛)𝐴) = (𝐸 𝑘 ∈ (1...𝑛)𝐴))
125124fveq2d 6107 . . . . . . . . . . . . . . . . . 18 (𝑒 = 𝐸 → (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
126 difeq1 3683 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝐸 → (𝑒 𝑘 ∈ (1...𝑛)𝐴) = (𝐸 𝑘 ∈ (1...𝑛)𝐴))
127126fveq2d 6107 . . . . . . . . . . . . . . . . . 18 (𝑒 = 𝐸 → (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
128125, 127oveq12d 6567 . . . . . . . . . . . . . . . . 17 (𝑒 = 𝐸 → ((𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴))) = ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))))
129 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑒 = 𝐸 → (𝑀𝑒) = (𝑀𝐸))
130128, 129eqeq12d 2625 . . . . . . . . . . . . . . . 16 (𝑒 = 𝐸 → (((𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝑒) ↔ ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝐸)))
131130rspcv 3278 . . . . . . . . . . . . . . 15 (𝐸 ∈ 𝒫 𝑂 → (∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝑒 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝑒) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝐸)))
13278, 123, 131sylc 63 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝐸))
133132adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀𝐸))
134 xaddpnf1 11931 . . . . . . . . . . . . . . 15 (((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* ∧ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 +∞) = +∞)
13581, 83, 134syl2anc 691 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 +∞) = +∞)
136135adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 +∞) = +∞)
13798, 133, 1363eqtr3d 2652 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → (𝑀𝐸) = +∞)
138 carsgclctunlem2.4 . . . . . . . . . . . . . 14 (𝜑 → (𝑀𝐸) ≠ +∞)
139138ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → (𝑀𝐸) ≠ +∞)
140139neneqd 2787 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞) → ¬ (𝑀𝐸) = +∞)
141137, 140pm2.65da 598 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ¬ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = -∞)
142141neqned 2789 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞)
143 xaddass 11951 . . . . . . . . . 10 ((((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* ∧ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞) ∧ ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* ∧ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞) ∧ (-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≠ -∞)) → (((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))))
14481, 83, 86, 88, 89, 142, 143syl222anc 1334 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))))
145 xnegid 11943 . . . . . . . . . . 11 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = 0)
14686, 145syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = 0)
147146oveq2d 6565 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))) = ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 0))
148 xaddid1 11946 . . . . . . . . . 10 ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 0) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
14981, 148syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 0) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
150144, 147, 1493eqtrd 2648 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
151132oveq1d 6564 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) = ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))))
152107ineq2d 3776 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐸 𝑘 ∈ (1...𝑛)𝐴) = (𝐸 ran (𝑘 ∈ (1...𝑛) ↦ 𝐴)))
153152fveq2d 6107 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = (𝑀‘(𝐸 ran (𝑘 ∈ (1...𝑛) ↦ 𝐴))))
154 mptss 5373 . . . . . . . . . . . . 13 ((1...𝑛) ⊆ ℕ → (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ (𝑘 ∈ ℕ ↦ 𝐴))
155 rnss 5275 . . . . . . . . . . . . 13 ((𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ (𝑘 ∈ ℕ ↦ 𝐴) → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ ran (𝑘 ∈ ℕ ↦ 𝐴))
156100, 154, 155mp2b 10 . . . . . . . . . . . 12 ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ ran (𝑘 ∈ ℕ ↦ 𝐴)
157156a1i 11 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ ran (𝑘 ∈ ℕ ↦ 𝐴))
158 disjrnmpt 28780 . . . . . . . . . . . . 13 (Disj 𝑘 ∈ ℕ 𝐴Disj 𝑦 ∈ ran (𝑘 ∈ ℕ ↦ 𝐴)𝑦)
15962, 158syl 17 . . . . . . . . . . . 12 (𝜑Disj 𝑦 ∈ ran (𝑘 ∈ ℕ ↦ 𝐴)𝑦)
160159adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → Disj 𝑦 ∈ ran (𝑘 ∈ ℕ ↦ 𝐴)𝑦)
161 disjss1 4559 . . . . . . . . . . 11 (ran (𝑘 ∈ (1...𝑛) ↦ 𝐴) ⊆ ran (𝑘 ∈ ℕ ↦ 𝐴) → (Disj 𝑦 ∈ ran (𝑘 ∈ ℕ ↦ 𝐴)𝑦Disj 𝑦 ∈ ran (𝑘 ∈ (1...𝑛) ↦ 𝐴)𝑦))
162157, 160, 161sylc 63 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → Disj 𝑦 ∈ ran (𝑘 ∈ (1...𝑛) ↦ 𝐴)𝑦)
163108, 77, 109, 110, 115, 118, 162, 78carsgclctunlem1 29706 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 ran (𝑘 ∈ (1...𝑛) ↦ 𝐴))) = Σ*𝑦 ∈ ran (𝑘 ∈ (1...𝑛) ↦ 𝐴)(𝑀‘(𝐸𝑦)))
164 ineq2 3770 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝐸𝑦) = (𝐸𝐴))
165164fveq2d 6107 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑀‘(𝐸𝑦)) = (𝑀‘(𝐸𝐴)))
166111elexi 3186 . . . . . . . . . . 11 (1...𝑛) ∈ V
167166a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1...𝑛) ∈ V)
16899, 102, 22syl2anc 691 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑀‘(𝐸𝐴)) ∈ (0[,]+∞))
169 inss2 3796 . . . . . . . . . . . . . . 15 (𝐸𝐴) ⊆ 𝐴
170 sseq2 3590 . . . . . . . . . . . . . . 15 (𝐴 = ∅ → ((𝐸𝐴) ⊆ 𝐴 ↔ (𝐸𝐴) ⊆ ∅))
171169, 170mpbii 222 . . . . . . . . . . . . . 14 (𝐴 = ∅ → (𝐸𝐴) ⊆ ∅)
172 ss0 3926 . . . . . . . . . . . . . 14 ((𝐸𝐴) ⊆ ∅ → (𝐸𝐴) = ∅)
173171, 172syl 17 . . . . . . . . . . . . 13 (𝐴 = ∅ → (𝐸𝐴) = ∅)
174173adantl 481 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝐴 = ∅) → (𝐸𝐴) = ∅)
175174fveq2d 6107 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝐴 = ∅) → (𝑀‘(𝐸𝐴)) = (𝑀‘∅))
176109ad2antrr 758 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝐴 = ∅) → (𝑀‘∅) = 0)
177175, 176eqtrd 2644 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝐴 = ∅) → (𝑀‘(𝐸𝐴)) = 0)
17862adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → Disj 𝑘 ∈ ℕ 𝐴)
179 disjss1 4559 . . . . . . . . . . 11 ((1...𝑛) ⊆ ℕ → (Disj 𝑘 ∈ ℕ 𝐴Disj 𝑘 ∈ (1...𝑛)𝐴))
180101, 178, 179sylc 63 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → Disj 𝑘 ∈ (1...𝑛)𝐴)
181165, 167, 168, 104, 177, 180esumrnmpt2 29457 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → Σ*𝑦 ∈ ran (𝑘 ∈ (1...𝑛) ↦ 𝐴)(𝑀‘(𝐸𝑦)) = Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝐸𝐴)))
182153, 163, 1813eqtrd 2648 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) = Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝐸𝐴)))
183150, 151, 1823eqtr3rd 2653 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝐸𝐴)) = ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))))
18417adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ (0[,]+∞))
1853, 184sseldi 3566 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ*)
186185xnegcld 12002 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ*)
18715adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑀𝐸) ∈ ℝ*)
188 iunss1 4468 . . . . . . . . . . . 12 ((1...𝑛) ⊆ ℕ → 𝑘 ∈ (1...𝑛)𝐴 𝑘 ∈ ℕ 𝐴)
189100, 188mp1i 13 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑘 ∈ (1...𝑛)𝐴 𝑘 ∈ ℕ 𝐴)
190189sscond 3709 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐸 𝑘 ∈ ℕ 𝐴) ⊆ (𝐸 𝑘 ∈ (1...𝑛)𝐴))
191743adant1r 1311 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
192108, 77, 190, 84, 191carsgmon 29703 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)))
193 xleneg 11923 . . . . . . . . . 10 (((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ* ∧ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ*) → ((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ↔ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≤ -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
194193biimpa 500 . . . . . . . . 9 ((((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ* ∧ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ*) ∧ (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ (𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) → -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≤ -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)))
195185, 86, 192, 194syl21anc 1317 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≤ -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)))
196 xleadd2a 11956 . . . . . . . 8 (((-𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ∈ ℝ* ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ* ∧ (𝑀𝐸) ∈ ℝ*) ∧ -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴)) ≤ -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) → ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
19789, 186, 187, 195, 196syl31anc 1321 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ (1...𝑛)𝐴))) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
198183, 197eqbrtrd 4605 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝐸𝐴)) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
19976, 22, 198esumgect 29479 . . . . 5 (𝜑 → Σ*𝑘 ∈ ℕ(𝑀‘(𝐸𝐴)) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
20012, 27, 20, 71, 199xrletrd 11869 . . . 4 (𝜑 → (𝑀 𝑘 ∈ ℕ (𝐸𝐴)) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
2012, 200syl5eqbrr 4619 . . 3 (𝜑 → (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
202 xleadd1a 11955 . . 3 ((((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ* ∧ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ∈ ℝ* ∧ (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ ℝ*) ∧ (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ ((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)))) → ((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ≤ (((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
20313, 20, 18, 201, 202syl31anc 1321 . 2 (𝜑 → ((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ≤ (((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))))
204 xrge0npcan 29025 . . 3 (((𝑀𝐸) ∈ (0[,]+∞) ∧ (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ∈ (0[,]+∞) ∧ (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) ≤ (𝑀𝐸)) → (((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) = (𝑀𝐸))
20514, 17, 75, 204syl3anc 1318 . 2 (𝜑 → (((𝑀𝐸) +𝑒 -𝑒(𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) = (𝑀𝐸))
206203, 205breqtrd 4609 1 (𝜑 → ((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ≤ (𝑀𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  Vcvv 3173  cdif 3537  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108   cuni 4372   ciun 4455  Disj wdisj 4553   class class class wbr 4583  cmpt 4643  ran crn 5039  wf 5800  cfv 5804  (class class class)co 6549  ωcom 6957  cdom 7839  Fincfn 7841  0cc0 9815  1c1 9816  +∞cpnf 9950  -∞cmnf 9951  *cxr 9952  cle 9954  cn 10897  -𝑒cxne 11819   +𝑒 cxad 11820  [,]cicc 12049  ...cfz 12197  Σ*cesum 29416  toCaraSigaccarsg 29690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-ac2 9168  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-ac 8822  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-ordt 15984  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-ps 17023  df-tsr 17024  df-plusf 17064  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-subrg 18601  df-abv 18640  df-lmod 18688  df-scaf 18689  df-sra 18993  df-rgmod 18994  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-tmd 21686  df-tgp 21687  df-tsms 21740  df-trg 21773  df-xms 21935  df-ms 21936  df-tms 21937  df-nm 22197  df-ngp 22198  df-nrg 22200  df-nlm 22201  df-ii 22488  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-esum 29417  df-carsg 29691
This theorem is referenced by:  carsgclctunlem3  29709
  Copyright terms: Public domain W3C validator