MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddid1 Structured version   Visualization version   GIF version

Theorem xaddid1 11946
Description: Extended real version of addid1 10095. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddid1 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)

Proof of Theorem xaddid1
StepHypRef Expression
1 elxr 11826 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 0re 9919 . . . . 5 0 ∈ ℝ
3 rexadd 11937 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 +𝑒 0) = (𝐴 + 0))
42, 3mpan2 703 . . . 4 (𝐴 ∈ ℝ → (𝐴 +𝑒 0) = (𝐴 + 0))
5 recn 9905 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
65addid1d 10115 . . . 4 (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴)
74, 6eqtrd 2644 . . 3 (𝐴 ∈ ℝ → (𝐴 +𝑒 0) = 𝐴)
8 0xr 9965 . . . . 5 0 ∈ ℝ*
9 renemnf 9967 . . . . . 6 (0 ∈ ℝ → 0 ≠ -∞)
102, 9ax-mp 5 . . . . 5 0 ≠ -∞
11 xaddpnf2 11932 . . . . 5 ((0 ∈ ℝ* ∧ 0 ≠ -∞) → (+∞ +𝑒 0) = +∞)
128, 10, 11mp2an 704 . . . 4 (+∞ +𝑒 0) = +∞
13 oveq1 6556 . . . 4 (𝐴 = +∞ → (𝐴 +𝑒 0) = (+∞ +𝑒 0))
14 id 22 . . . 4 (𝐴 = +∞ → 𝐴 = +∞)
1512, 13, 143eqtr4a 2670 . . 3 (𝐴 = +∞ → (𝐴 +𝑒 0) = 𝐴)
16 renepnf 9966 . . . . . 6 (0 ∈ ℝ → 0 ≠ +∞)
172, 16ax-mp 5 . . . . 5 0 ≠ +∞
18 xaddmnf2 11934 . . . . 5 ((0 ∈ ℝ* ∧ 0 ≠ +∞) → (-∞ +𝑒 0) = -∞)
198, 17, 18mp2an 704 . . . 4 (-∞ +𝑒 0) = -∞
20 oveq1 6556 . . . 4 (𝐴 = -∞ → (𝐴 +𝑒 0) = (-∞ +𝑒 0))
21 id 22 . . . 4 (𝐴 = -∞ → 𝐴 = -∞)
2219, 20, 213eqtr4a 2670 . . 3 (𝐴 = -∞ → (𝐴 +𝑒 0) = 𝐴)
237, 15, 223jaoi 1383 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 +𝑒 0) = 𝐴)
241, 23sylbi 206 1 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1030   = wceq 1475  wcel 1977  wne 2780  (class class class)co 6549  cr 9814  0cc0 9815   + caddc 9818  +∞cpnf 9950  -∞cmnf 9951  *cxr 9952   +𝑒 cxad 11820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-xadd 11823
This theorem is referenced by:  xaddid2  11947  xaddid1d  11948  xnn0xadd0  11949  xpncan  11953  xadddi  11997  xadddi2  11999  xrsnsgrp  19601  xrs1mnd  19603  xrs10  19604  psmetsym  21925  xmetsym  21962  imasdsf1olem  21988  stdbdxmet  22130  xrge0gsumle  22444  metdsle  22463  metnrmlem1  22470  vdusgraval  26434  xraddge02  28911  xlt2addrd  28913  xrs0  29006  xrge0addgt0  29022  xrge0npcan  29025  metideq  29264  metider  29265  esumpad  29444  esumpr2  29456  esumpfinvallem  29463  esumpmono  29468  ddemeas  29626  aean  29634  baselcarsg  29695  carsgclctunlem2  29708  xadd0ge  38477  sge0tsms  39273  sge0ss  39305  vtxdlfgrval  40700
  Copyright terms: Public domain W3C validator