Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgmon Structured version   Visualization version   GIF version

Theorem carsgmon 29703
Description: Utility lemma: Apply monotony. (Contributed by Thierry Arnoux, 29-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgmon.1 (𝜑𝐴𝐵)
carsgmon.2 (𝜑𝐵 ∈ 𝒫 𝑂)
carsgmon.3 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
Assertion
Ref Expression
carsgmon (𝜑 → (𝑀𝐴) ≤ (𝑀𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem carsgmon
StepHypRef Expression
1 carsgmon.2 . . 3 (𝜑𝐵 ∈ 𝒫 𝑂)
2 carsgmon.1 . . 3 (𝜑𝐴𝐵)
31, 2ssexd 4733 . 2 (𝜑𝐴 ∈ V)
4 id 22 . 2 (𝜑𝜑)
5 sseq1 3589 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑦𝐴𝑦))
653anbi2d 1396 . . . . 5 (𝑥 = 𝐴 → ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) ↔ (𝜑𝐴𝑦𝑦 ∈ 𝒫 𝑂)))
7 fveq2 6103 . . . . . 6 (𝑥 = 𝐴 → (𝑀𝑥) = (𝑀𝐴))
87breq1d 4593 . . . . 5 (𝑥 = 𝐴 → ((𝑀𝑥) ≤ (𝑀𝑦) ↔ (𝑀𝐴) ≤ (𝑀𝑦)))
96, 8imbi12d 333 . . . 4 (𝑥 = 𝐴 → (((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦)) ↔ ((𝜑𝐴𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝐴) ≤ (𝑀𝑦))))
10 sseq2 3590 . . . . . 6 (𝑦 = 𝐵 → (𝐴𝑦𝐴𝐵))
11 eleq1 2676 . . . . . 6 (𝑦 = 𝐵 → (𝑦 ∈ 𝒫 𝑂𝐵 ∈ 𝒫 𝑂))
1210, 113anbi23d 1394 . . . . 5 (𝑦 = 𝐵 → ((𝜑𝐴𝑦𝑦 ∈ 𝒫 𝑂) ↔ (𝜑𝐴𝐵𝐵 ∈ 𝒫 𝑂)))
13 fveq2 6103 . . . . . 6 (𝑦 = 𝐵 → (𝑀𝑦) = (𝑀𝐵))
1413breq2d 4595 . . . . 5 (𝑦 = 𝐵 → ((𝑀𝐴) ≤ (𝑀𝑦) ↔ (𝑀𝐴) ≤ (𝑀𝐵)))
1512, 14imbi12d 333 . . . 4 (𝑦 = 𝐵 → (((𝜑𝐴𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝐴) ≤ (𝑀𝑦)) ↔ ((𝜑𝐴𝐵𝐵 ∈ 𝒫 𝑂) → (𝑀𝐴) ≤ (𝑀𝐵))))
16 carsgmon.3 . . . 4 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
179, 15, 16vtocl2g 3243 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ 𝒫 𝑂) → ((𝜑𝐴𝐵𝐵 ∈ 𝒫 𝑂) → (𝑀𝐴) ≤ (𝑀𝐵)))
1817imp 444 . 2 (((𝐴 ∈ V ∧ 𝐵 ∈ 𝒫 𝑂) ∧ (𝜑𝐴𝐵𝐵 ∈ 𝒫 𝑂)) → (𝑀𝐴) ≤ (𝑀𝐵))
193, 1, 4, 2, 1, 18syl23anc 1325 1 (𝜑 → (𝑀𝐴) ≤ (𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  wss 3540  𝒫 cpw 4108   class class class wbr 4583  wf 5800  cfv 5804  (class class class)co 6549  0cc0 9815  +∞cpnf 9950  cle 9954  [,]cicc 12049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812
This theorem is referenced by:  carsggect  29707  carsgclctunlem2  29708
  Copyright terms: Public domain W3C validator