Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgclctun Structured version   Visualization version   GIF version

Theorem carsgclctun 29710
Description: The Caratheodory measurable sets are closed under countable union. (Contributed by Thierry Arnoux, 21-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
carsgsiga.3 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
carsgclctun.1 (𝜑𝐴 ≼ ω)
carsgclctun.2 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
Assertion
Ref Expression
carsgclctun (𝜑 𝐴 ∈ (toCaraSiga‘𝑀))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem carsgclctun
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 carsgclctun.2 . . . 4 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
2 uniss 4394 . . . 4 (𝐴 ⊆ (toCaraSiga‘𝑀) → 𝐴 (toCaraSiga‘𝑀))
31, 2syl 17 . . 3 (𝜑 𝐴 (toCaraSiga‘𝑀))
4 carsgval.1 . . . 4 (𝜑𝑂𝑉)
5 carsgval.2 . . . 4 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
6 carsgsiga.1 . . . 4 (𝜑 → (𝑀‘∅) = 0)
74, 5, 6carsguni 29697 . . 3 (𝜑 (toCaraSiga‘𝑀) = 𝑂)
83, 7sseqtrd 3604 . 2 (𝜑 𝐴𝑂)
94adantr 480 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑂𝑉)
105adantr 480 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
116adantr 480 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘∅) = 0)
12 carsgsiga.2 . . . . . . 7 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
13123adant1r 1311 . . . . . 6 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
14 carsgsiga.3 . . . . . . 7 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
15143adant1r 1311 . . . . . 6 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
16 carsgclctun.1 . . . . . . 7 (𝜑𝐴 ≼ ω)
1716adantr 480 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝐴 ≼ ω)
181adantr 480 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝐴 ⊆ (toCaraSiga‘𝑀))
19 simpr 476 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑒 ∈ 𝒫 𝑂)
209, 10, 11, 13, 15, 17, 18, 19carsgclctunlem3 29709 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) ≤ (𝑀𝑒))
21 inex1g 4729 . . . . . . . . 9 (𝑒 ∈ 𝒫 𝑂 → (𝑒 𝐴) ∈ V)
2221adantl 481 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 𝐴) ∈ V)
23 difexg 4735 . . . . . . . . 9 (𝑒 ∈ 𝒫 𝑂 → (𝑒 𝐴) ∈ V)
2423adantl 481 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 𝐴) ∈ V)
25 prct 28875 . . . . . . . 8 (((𝑒 𝐴) ∈ V ∧ (𝑒 𝐴) ∈ V) → {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω)
2622, 24, 25syl2anc 691 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω)
2719elpwincl1 28741 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 𝐴) ∈ 𝒫 𝑂)
2819elpwdifcl 28742 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 𝐴) ∈ 𝒫 𝑂)
29 prssi 4293 . . . . . . . 8 (((𝑒 𝐴) ∈ 𝒫 𝑂 ∧ (𝑒 𝐴) ∈ 𝒫 𝑂) → {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂)
3027, 28, 29syl2anc 691 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂)
31 prex 4836 . . . . . . . . 9 {(𝑒 𝐴), (𝑒 𝐴)} ∈ V
32 breq1 4586 . . . . . . . . . . . 12 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → (𝑥 ≼ ω ↔ {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω))
33 sseq1 3589 . . . . . . . . . . . 12 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → (𝑥 ⊆ 𝒫 𝑂 ↔ {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂))
3432, 333anbi23d 1394 . . . . . . . . . . 11 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) ↔ (𝜑 ∧ {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω ∧ {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂)))
35 unieq 4380 . . . . . . . . . . . . 13 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → 𝑥 = {(𝑒 𝐴), (𝑒 𝐴)})
3635fveq2d 6107 . . . . . . . . . . . 12 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → (𝑀 𝑥) = (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}))
37 esumeq1 29423 . . . . . . . . . . . 12 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → Σ*𝑦𝑥(𝑀𝑦) = Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦))
3836, 37breq12d 4596 . . . . . . . . . . 11 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → ((𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦) ↔ (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) ≤ Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦)))
3934, 38imbi12d 333 . . . . . . . . . 10 (𝑥 = {(𝑒 𝐴), (𝑒 𝐴)} → (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦)) ↔ ((𝜑 ∧ {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω ∧ {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂) → (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) ≤ Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦))))
4039, 12vtoclg 3239 . . . . . . . . 9 ({(𝑒 𝐴), (𝑒 𝐴)} ∈ V → ((𝜑 ∧ {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω ∧ {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂) → (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) ≤ Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦)))
4131, 40ax-mp 5 . . . . . . . 8 ((𝜑 ∧ {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω ∧ {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂) → (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) ≤ Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦))
42413adant1r 1311 . . . . . . 7 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ {(𝑒 𝐴), (𝑒 𝐴)} ≼ ω ∧ {(𝑒 𝐴), (𝑒 𝐴)} ⊆ 𝒫 𝑂) → (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) ≤ Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦))
4326, 30, 42mpd3an23 1418 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) ≤ Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦))
44 uniprg 4386 . . . . . . . . 9 (((𝑒 𝐴) ∈ 𝒫 𝑂 ∧ (𝑒 𝐴) ∈ 𝒫 𝑂) → {(𝑒 𝐴), (𝑒 𝐴)} = ((𝑒 𝐴) ∪ (𝑒 𝐴)))
4527, 28, 44syl2anc 691 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → {(𝑒 𝐴), (𝑒 𝐴)} = ((𝑒 𝐴) ∪ (𝑒 𝐴)))
46 inundif 3998 . . . . . . . 8 ((𝑒 𝐴) ∪ (𝑒 𝐴)) = 𝑒
4745, 46syl6eq 2660 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → {(𝑒 𝐴), (𝑒 𝐴)} = 𝑒)
4847fveq2d 6107 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀 {(𝑒 𝐴), (𝑒 𝐴)}) = (𝑀𝑒))
49 simpr 476 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑦 = (𝑒 𝐴)) → 𝑦 = (𝑒 𝐴))
5049fveq2d 6107 . . . . . . 7 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑦 = (𝑒 𝐴)) → (𝑀𝑦) = (𝑀‘(𝑒 𝐴)))
51 simpr 476 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑦 = (𝑒 𝐴)) → 𝑦 = (𝑒 𝐴))
5251fveq2d 6107 . . . . . . 7 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑦 = (𝑒 𝐴)) → (𝑀𝑦) = (𝑀‘(𝑒 𝐴)))
5310, 27ffvelrnd 6268 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 𝐴)) ∈ (0[,]+∞))
5410, 28ffvelrnd 6268 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 𝐴)) ∈ (0[,]+∞))
55 ineq2 3770 . . . . . . . . . . . . 13 ((𝑒 𝐴) = (𝑒 𝐴) → ((𝑒 𝐴) ∩ (𝑒 𝐴)) = ((𝑒 𝐴) ∩ (𝑒 𝐴)))
56 inidm 3784 . . . . . . . . . . . . 13 ((𝑒 𝐴) ∩ (𝑒 𝐴)) = (𝑒 𝐴)
57 inindif 28738 . . . . . . . . . . . . 13 ((𝑒 𝐴) ∩ (𝑒 𝐴)) = ∅
5855, 56, 573eqtr3g 2667 . . . . . . . . . . . 12 ((𝑒 𝐴) = (𝑒 𝐴) → (𝑒 𝐴) = ∅)
5958adantl 481 . . . . . . . . . . 11 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ (𝑒 𝐴) = (𝑒 𝐴)) → (𝑒 𝐴) = ∅)
6059fveq2d 6107 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ (𝑒 𝐴) = (𝑒 𝐴)) → (𝑀‘(𝑒 𝐴)) = (𝑀‘∅))
616ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ (𝑒 𝐴) = (𝑒 𝐴)) → (𝑀‘∅) = 0)
6260, 61eqtrd 2644 . . . . . . . . 9 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ (𝑒 𝐴) = (𝑒 𝐴)) → (𝑀‘(𝑒 𝐴)) = 0)
6362orcd 406 . . . . . . . 8 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ (𝑒 𝐴) = (𝑒 𝐴)) → ((𝑀‘(𝑒 𝐴)) = 0 ∨ (𝑀‘(𝑒 𝐴)) = +∞))
6463ex 449 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑒 𝐴) = (𝑒 𝐴) → ((𝑀‘(𝑒 𝐴)) = 0 ∨ (𝑀‘(𝑒 𝐴)) = +∞)))
6550, 52, 27, 28, 53, 54, 64esumpr2 29456 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → Σ*𝑦 ∈ {(𝑒 𝐴), (𝑒 𝐴)} (𝑀𝑦) = ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))))
6643, 48, 653brtr3d 4614 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ≤ ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))))
6720, 66jca 553 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂) → (((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) ≤ (𝑀𝑒) ∧ (𝑀𝑒) ≤ ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴)))))
68 iccssxr 12127 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
6968, 53sseldi 3566 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 𝐴)) ∈ ℝ*)
7068, 54sseldi 3566 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 𝐴)) ∈ ℝ*)
7169, 70xaddcld 12003 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) ∈ ℝ*)
725ffvelrnda 6267 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ (0[,]+∞))
7368, 72sseldi 3566 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ ℝ*)
74 xrletri3 11861 . . . . 5 ((((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) ∈ ℝ* ∧ (𝑀𝑒) ∈ ℝ*) → (((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) = (𝑀𝑒) ↔ (((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) ≤ (𝑀𝑒) ∧ (𝑀𝑒) ≤ ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))))))
7571, 73, 74syl2anc 691 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂) → (((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) = (𝑀𝑒) ↔ (((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) ≤ (𝑀𝑒) ∧ (𝑀𝑒) ≤ ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))))))
7667, 75mpbird 246 . . 3 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) = (𝑀𝑒))
7776ralrimiva 2949 . 2 (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) = (𝑀𝑒))
784, 5elcarsg 29694 . 2 (𝜑 → ( 𝐴 ∈ (toCaraSiga‘𝑀) ↔ ( 𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 𝐴)) +𝑒 (𝑀‘(𝑒 𝐴))) = (𝑀𝑒))))
798, 77, 78mpbir2and 959 1 (𝜑 𝐴 ∈ (toCaraSiga‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108  {cpr 4127   cuni 4372   class class class wbr 4583  wf 5800  cfv 5804  (class class class)co 6549  ωcom 6957  cdom 7839  0cc0 9815  +∞cpnf 9950  *cxr 9952  cle 9954   +𝑒 cxad 11820  [,]cicc 12049  Σ*cesum 29416  toCaraSigaccarsg 29690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-ac2 9168  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-ac 8822  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-ordt 15984  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-ps 17023  df-tsr 17024  df-plusf 17064  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-subrg 18601  df-abv 18640  df-lmod 18688  df-scaf 18689  df-sra 18993  df-rgmod 18994  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-tmd 21686  df-tgp 21687  df-tsms 21740  df-trg 21773  df-xms 21935  df-ms 21936  df-tms 21937  df-nm 22197  df-ngp 22198  df-nrg 22200  df-nlm 22201  df-ii 22488  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-esum 29417  df-carsg 29691
This theorem is referenced by:  carsgsiga  29711  omsmeas  29712
  Copyright terms: Public domain W3C validator