Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xaddcld | Structured version Visualization version GIF version |
Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
xnegcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xaddcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
xaddcld | ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xnegcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | xaddcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
3 | xaddcl 11944 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*) | |
4 | 1, 2, 3 | syl2anc 691 | 1 ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1977 (class class class)co 6549 ℝ*cxr 9952 +𝑒 cxad 11820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-i2m1 9883 ax-1ne0 9884 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-pnf 9955 df-mnf 9956 df-xr 9957 df-xadd 11823 |
This theorem is referenced by: xadd4d 12005 imasdsf1olem 21988 bldisj 22013 xblss2ps 22016 xblss2 22017 blcld 22120 comet 22128 stdbdxmet 22130 metdstri 22462 metdscnlem 22466 iscau3 22884 xlt2addrd 28913 xrge0addcld 28917 xrge0subcld 28918 xrofsup 28923 xrsmulgzz 29009 xrge0adddir 29023 xrge0adddi 29024 esumle 29447 esumlef 29451 omssubadd 29689 inelcarsg 29700 carsgclctunlem2 29708 carsgclctunlem3 29709 carsgclctun 29710 xle2addd 38493 infrpge 38508 xrlexaddrp 38509 infleinflem1 38527 infleinflem2 38528 ismbl3 38879 ismbl4 38886 sge0prle 39294 sge0split 39302 sge0iunmptlemre 39308 sge0xaddlem1 39326 omeunle 39406 carageniuncl 39413 ovnsubaddlem1 39460 hspmbl 39519 ovolval5lem1 39542 |
Copyright terms: Public domain | W3C validator |