MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddcld Structured version   Visualization version   GIF version

Theorem xaddcld 12003
Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
xnegcld.1 (𝜑𝐴 ∈ ℝ*)
xaddcld.2 (𝜑𝐵 ∈ ℝ*)
Assertion
Ref Expression
xaddcld (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*)

Proof of Theorem xaddcld
StepHypRef Expression
1 xnegcld.1 . 2 (𝜑𝐴 ∈ ℝ*)
2 xaddcld.2 . 2 (𝜑𝐵 ∈ ℝ*)
3 xaddcl 11944 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
41, 2, 3syl2anc 691 1 (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1977  (class class class)co 6549  *cxr 9952   +𝑒 cxad 11820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-i2m1 9883  ax-1ne0 9884  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-pnf 9955  df-mnf 9956  df-xr 9957  df-xadd 11823
This theorem is referenced by:  xadd4d  12005  imasdsf1olem  21988  bldisj  22013  xblss2ps  22016  xblss2  22017  blcld  22120  comet  22128  stdbdxmet  22130  metdstri  22462  metdscnlem  22466  iscau3  22884  xlt2addrd  28913  xrge0addcld  28917  xrge0subcld  28918  xrofsup  28923  xrsmulgzz  29009  xrge0adddir  29023  xrge0adddi  29024  esumle  29447  esumlef  29451  omssubadd  29689  inelcarsg  29700  carsgclctunlem2  29708  carsgclctunlem3  29709  carsgclctun  29710  xle2addd  38493  infrpge  38508  xrlexaddrp  38509  infleinflem1  38527  infleinflem2  38528  ismbl3  38879  ismbl4  38886  sge0prle  39294  sge0split  39302  sge0iunmptlemre  39308  sge0xaddlem1  39326  omeunle  39406  carageniuncl  39413  ovnsubaddlem1  39460  hspmbl  39519  ovolval5lem1  39542
  Copyright terms: Public domain W3C validator