Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunss1 Structured version   Visualization version   GIF version

Theorem iunss1 4468
 Description: Subclass theorem for indexed union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iunss1 (𝐴𝐵 𝑥𝐴 𝐶 𝑥𝐵 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iunss1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssrexv 3630 . . 3 (𝐴𝐵 → (∃𝑥𝐴 𝑦𝐶 → ∃𝑥𝐵 𝑦𝐶))
2 eliun 4460 . . 3 (𝑦 𝑥𝐴 𝐶 ↔ ∃𝑥𝐴 𝑦𝐶)
3 eliun 4460 . . 3 (𝑦 𝑥𝐵 𝐶 ↔ ∃𝑥𝐵 𝑦𝐶)
41, 2, 33imtr4g 284 . 2 (𝐴𝐵 → (𝑦 𝑥𝐴 𝐶𝑦 𝑥𝐵 𝐶))
54ssrdv 3574 1 (𝐴𝐵 𝑥𝐴 𝐶 𝑥𝐵 𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 1977  ∃wrex 2897   ⊆ wss 3540  ∪ ciun 4455 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-v 3175  df-in 3547  df-ss 3554  df-iun 4457 This theorem is referenced by:  iuneq1  4470  iunxdif2  4504  oelim2  7562  fsumiun  14394  ovolfiniun  23076  uniioovol  23153  usgreghash2spotv  26593  esum2dlem  29481  esum2d  29482  carsgclctunlem2  29708  bnj1413  30357  bnj1408  30358  volsupnfl  32624  corclrcl  37018  cotrcltrcl  37036  iuneqfzuzlem  38491  fsumiunss  38642  sge0iunmptlemfi  39306  sge0iunmptlemre  39308  carageniuncllem1  39411  carageniuncllem2  39412  caratheodorylem2  39417  ovnsubaddlem1  39460  fusgreghash2wspv  41499
 Copyright terms: Public domain W3C validator