Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumiunss Structured version   Visualization version   GIF version

Theorem fsumiunss 38642
Description: Sum over a disjoint indexed union, intersected with a finite set 𝐷. Similar to fsumiun 14394, but here 𝐴 and 𝐵 need not be finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
fsumiunss.b ((𝜑𝑥𝐴) → 𝐵𝑉)
fsumiunss.dj (𝜑Disj 𝑥𝐴 𝐵)
fsumiunss.c ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)
fsumiunss.fi (𝜑𝐷 ∈ Fin)
Assertion
Ref Expression
fsumiunss (𝜑 → Σ𝑘 𝑥𝐴 (𝐵𝐷)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝐵𝐷)𝐶)
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘   𝑥,𝐶   𝐷,𝑘,𝑥   𝑥,𝑉   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘)   𝑉(𝑘)

Proof of Theorem fsumiunss
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2751 . . . . 5 𝑦(𝐵𝐷)
2 nfcsb1v 3515 . . . . . 6 𝑥𝑦 / 𝑥𝐵
3 nfcv 2751 . . . . . 6 𝑥𝐷
42, 3nfin 3782 . . . . 5 𝑥(𝑦 / 𝑥𝐵𝐷)
5 csbeq1a 3508 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
65ineq1d 3775 . . . . 5 (𝑥 = 𝑦 → (𝐵𝐷) = (𝑦 / 𝑥𝐵𝐷))
71, 4, 6cbviun 4493 . . . 4 𝑥𝐴 (𝐵𝐷) = 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)
87sumeq1i 14276 . . 3 Σ𝑘 𝑥𝐴 (𝐵𝐷)𝐶 = Σ𝑘 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)𝐶
98a1i 11 . 2 (𝜑 → Σ𝑘 𝑥𝐴 (𝐵𝐷)𝐶 = Σ𝑘 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)𝐶)
10 eliun 4460 . . . . . . . . . . . 12 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) ↔ ∃𝑦𝐴 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))
1110biimpi 205 . . . . . . . . . . 11 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → ∃𝑦𝐴 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))
12 df-rex 2902 . . . . . . . . . . 11 (∃𝑦𝐴 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷) ↔ ∃𝑦(𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)))
1311, 12sylib 207 . . . . . . . . . 10 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → ∃𝑦(𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)))
14 nfcv 2751 . . . . . . . . . . . 12 𝑦𝑧
15 nfiu1 4486 . . . . . . . . . . . 12 𝑦 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)
1614, 15nfel 2763 . . . . . . . . . . 11 𝑦 𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)
17 simpl 472 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → 𝑦𝐴)
18 ne0i 3880 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝑦 / 𝑥𝐵𝐷) → (𝑦 / 𝑥𝐵𝐷) ≠ ∅)
1918adantl 481 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → (𝑦 / 𝑥𝐵𝐷) ≠ ∅)
2017, 19jca 553 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → (𝑦𝐴 ∧ (𝑦 / 𝑥𝐵𝐷) ≠ ∅))
21 nfcv 2751 . . . . . . . . . . . . . . 15 𝑥𝑦
22 nfv 1830 . . . . . . . . . . . . . . . 16 𝑥 𝑦𝐴
2322nfci 2741 . . . . . . . . . . . . . . 15 𝑥𝐴
24 nfcv 2751 . . . . . . . . . . . . . . . 16 𝑥
254, 24nfne 2882 . . . . . . . . . . . . . . 15 𝑥(𝑦 / 𝑥𝐵𝐷) ≠ ∅
266neeq1d 2841 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ((𝐵𝐷) ≠ ∅ ↔ (𝑦 / 𝑥𝐵𝐷) ≠ ∅))
2721, 23, 25, 26elrabf 3329 . . . . . . . . . . . . . 14 (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ↔ (𝑦𝐴 ∧ (𝑦 / 𝑥𝐵𝐷) ≠ ∅))
2820, 27sylibr 223 . . . . . . . . . . . . 13 ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅})
29 simpr 476 . . . . . . . . . . . . 13 ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))
3028, 29jca 553 . . . . . . . . . . . 12 ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)))
3130a1i 11 . . . . . . . . . . 11 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))))
3216, 31eximd 2072 . . . . . . . . . 10 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → (∃𝑦(𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → ∃𝑦(𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))))
3313, 32mpd 15 . . . . . . . . 9 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → ∃𝑦(𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)))
34 df-rex 2902 . . . . . . . . 9 (∃𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}𝑧 ∈ (𝑦 / 𝑥𝐵𝐷) ↔ ∃𝑦(𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)))
3533, 34sylibr 223 . . . . . . . 8 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → ∃𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))
36 eliun 4460 . . . . . . . 8 (𝑧 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷) ↔ ∃𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))
3735, 36sylibr 223 . . . . . . 7 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → 𝑧 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷))
3837rgen 2906 . . . . . 6 𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)𝑧 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)
39 dfss3 3558 . . . . . 6 ( 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷) ↔ ∀𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)𝑧 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷))
4038, 39mpbir 220 . . . . 5 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)
41 elrabi 3328 . . . . . . 7 (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} → 𝑦𝐴)
4241ssriv 3572 . . . . . 6 {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ⊆ 𝐴
43 iunss1 4468 . . . . . 6 ({𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ⊆ 𝐴 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷))
4442, 43ax-mp 5 . . . . 5 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)
4540, 44eqssi 3584 . . . 4 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) = 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)
4645sumeq1i 14276 . . 3 Σ𝑘 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑘 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)𝐶
4746a1i 11 . 2 (𝜑 → Σ𝑘 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑘 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)𝐶)
48 fsumiunss.b . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝑉)
49 fsumiunss.dj . . . . 5 (𝜑Disj 𝑥𝐴 𝐵)
50 fsumiunss.fi . . . . 5 (𝜑𝐷 ∈ Fin)
5148, 49, 50disjinfi 38375 . . . 4 (𝜑 → {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∈ Fin)
52 inss2 3796 . . . . . . 7 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝐷
5352a1i 11 . . . . . 6 (𝜑 → (𝑦 / 𝑥𝐵𝐷) ⊆ 𝐷)
54 ssfi 8065 . . . . . 6 ((𝐷 ∈ Fin ∧ (𝑦 / 𝑥𝐵𝐷) ⊆ 𝐷) → (𝑦 / 𝑥𝐵𝐷) ∈ Fin)
5550, 53, 54syl2anc 691 . . . . 5 (𝜑 → (𝑦 / 𝑥𝐵𝐷) ∈ Fin)
5655adantr 480 . . . 4 ((𝜑𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}) → (𝑦 / 𝑥𝐵𝐷) ∈ Fin)
5742a1i 11 . . . . 5 (𝜑 → {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ⊆ 𝐴)
58 inss1 3795 . . . . . . . 8 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦 / 𝑥𝐵
5958rgenw 2908 . . . . . . 7 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦 / 𝑥𝐵
6059a1i 11 . . . . . 6 (𝜑 → ∀𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦 / 𝑥𝐵)
61 nfcv 2751 . . . . . . . 8 𝑦𝐵
62 eqcom 2617 . . . . . . . . . . 11 (𝑥 = 𝑦𝑦 = 𝑥)
6362imbi1i 338 . . . . . . . . . 10 ((𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝐵 = 𝑦 / 𝑥𝐵))
64 eqcom 2617 . . . . . . . . . . 11 (𝐵 = 𝑦 / 𝑥𝐵𝑦 / 𝑥𝐵 = 𝐵)
6564imbi2i 325 . . . . . . . . . 10 ((𝑦 = 𝑥𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵))
6663, 65bitri 263 . . . . . . . . 9 ((𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵))
675, 66mpbi 219 . . . . . . . 8 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵)
682, 61, 67cbvdisj 4563 . . . . . . 7 (Disj 𝑦𝐴 𝑦 / 𝑥𝐵Disj 𝑥𝐴 𝐵)
6949, 68sylibr 223 . . . . . 6 (𝜑Disj 𝑦𝐴 𝑦 / 𝑥𝐵)
70 disjss2 4556 . . . . . 6 (∀𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦 / 𝑥𝐵 → (Disj 𝑦𝐴 𝑦 / 𝑥𝐵Disj 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)))
7160, 69, 70sylc 63 . . . . 5 (𝜑Disj 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷))
72 disjss1 4559 . . . . 5 ({𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ⊆ 𝐴 → (Disj 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → Disj 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)))
7357, 71, 72sylc 63 . . . 4 (𝜑Disj 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷))
74 simpl 472 . . . . 5 ((𝜑 ∧ (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑘 ∈ (𝑦 / 𝑥𝐵𝐷))) → 𝜑)
7541ad2antrl 760 . . . . 5 ((𝜑 ∧ (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑘 ∈ (𝑦 / 𝑥𝐵𝐷))) → 𝑦𝐴)
7658sseli 3564 . . . . . . 7 (𝑘 ∈ (𝑦 / 𝑥𝐵𝐷) → 𝑘𝑦 / 𝑥𝐵)
7776adantl 481 . . . . . 6 ((𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑘 ∈ (𝑦 / 𝑥𝐵𝐷)) → 𝑘𝑦 / 𝑥𝐵)
7877adantl 481 . . . . 5 ((𝜑 ∧ (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑘 ∈ (𝑦 / 𝑥𝐵𝐷))) → 𝑘𝑦 / 𝑥𝐵)
79 nfv 1830 . . . . . . . 8 𝑥𝜑
80 nfcv 2751 . . . . . . . . 9 𝑥𝑘
8180, 2nfel 2763 . . . . . . . 8 𝑥 𝑘𝑦 / 𝑥𝐵
8279, 22, 81nf3an 1819 . . . . . . 7 𝑥(𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵)
83 nfv 1830 . . . . . . 7 𝑥 𝐶 ∈ ℂ
8482, 83nfim 1813 . . . . . 6 𝑥((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ ℂ)
85 eleq1 2676 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
865eleq2d 2673 . . . . . . . 8 (𝑥 = 𝑦 → (𝑘𝐵𝑘𝑦 / 𝑥𝐵))
8785, 863anbi23d 1394 . . . . . . 7 (𝑥 = 𝑦 → ((𝜑𝑥𝐴𝑘𝐵) ↔ (𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵)))
8887imbi1d 330 . . . . . 6 (𝑥 = 𝑦 → (((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ) ↔ ((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ ℂ)))
89 fsumiunss.c . . . . . 6 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)
9084, 88, 89chvar 2250 . . . . 5 ((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ ℂ)
9174, 75, 78, 90syl3anc 1318 . . . 4 ((𝜑 ∧ (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑘 ∈ (𝑦 / 𝑥𝐵𝐷))) → 𝐶 ∈ ℂ)
9251, 56, 73, 91fsumiun 14394 . . 3 (𝜑 → Σ𝑘 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝑦 / 𝑥𝐵𝐷)𝐶)
9367ineq1d 3775 . . . . . 6 (𝑦 = 𝑥 → (𝑦 / 𝑥𝐵𝐷) = (𝐵𝐷))
9493sumeq1d 14279 . . . . 5 (𝑦 = 𝑥 → Σ𝑘 ∈ (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑘 ∈ (𝐵𝐷)𝐶)
95 nfrab1 3099 . . . . 5 𝑥{𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}
96 nfcv 2751 . . . . 5 𝑦{𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}
97 nfcv 2751 . . . . . 6 𝑥𝐶
984, 97nfsum 14269 . . . . 5 𝑥Σ𝑘 ∈ (𝑦 / 𝑥𝐵𝐷)𝐶
99 nfcv 2751 . . . . 5 𝑦Σ𝑘 ∈ (𝐵𝐷)𝐶
10094, 95, 96, 98, 99cbvsum 14273 . . . 4 Σ𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝐵𝐷)𝐶
101100a1i 11 . . 3 (𝜑 → Σ𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝐵𝐷)𝐶)
10292, 101eqtrd 2644 . 2 (𝜑 → Σ𝑘 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝐵𝐷)𝐶)
1039, 47, 1023eqtrd 2648 1 (𝜑 → Σ𝑘 𝑥𝐴 (𝐵𝐷)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝐵𝐷)𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  csb 3499  cin 3539  wss 3540  c0 3874   ciun 4455  Disj wdisj 4553  Fincfn 7841  cc 9813  Σcsu 14264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-ac2 9168  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-acn 8651  df-ac 8822  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265
This theorem is referenced by:  sge0iunmptlemre  39308
  Copyright terms: Public domain W3C validator