MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumiun Structured version   Visualization version   GIF version

Theorem fsumiun 14394
Description: Sum over a disjoint indexed union. (Contributed by Mario Carneiro, 1-Jul-2015.) (Revised by Mario Carneiro, 10-Dec-2016.)
Hypotheses
Ref Expression
fsumiun.1 (𝜑𝐴 ∈ Fin)
fsumiun.2 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
fsumiun.3 (𝜑Disj 𝑥𝐴 𝐵)
fsumiun.4 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsumiun (𝜑 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶)
Distinct variable groups:   𝑥,𝑘,𝐴   𝐵,𝑘   𝜑,𝑘,𝑥   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘)

Proof of Theorem fsumiun
Dummy variables 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3587 . 2 𝐴𝐴
2 fsumiun.1 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 3589 . . . . . 6 (𝑢 = ∅ → (𝑢𝐴 ↔ ∅ ⊆ 𝐴))
4 iuneq1 4470 . . . . . . . . 9 (𝑢 = ∅ → 𝑥𝑢 𝐵 = 𝑥 ∈ ∅ 𝐵)
5 0iun 4513 . . . . . . . . 9 𝑥 ∈ ∅ 𝐵 = ∅
64, 5syl6eq 2660 . . . . . . . 8 (𝑢 = ∅ → 𝑥𝑢 𝐵 = ∅)
76sumeq1d 14279 . . . . . . 7 (𝑢 = ∅ → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑘 ∈ ∅ 𝐶)
8 sumeq1 14267 . . . . . . 7 (𝑢 = ∅ → Σ𝑥𝑢 Σ𝑘𝐵 𝐶 = Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶)
97, 8eqeq12d 2625 . . . . . 6 (𝑢 = ∅ → (Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶 ↔ Σ𝑘 ∈ ∅ 𝐶 = Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶))
103, 9imbi12d 333 . . . . 5 (𝑢 = ∅ → ((𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶) ↔ (∅ ⊆ 𝐴 → Σ𝑘 ∈ ∅ 𝐶 = Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶)))
1110imbi2d 329 . . . 4 (𝑢 = ∅ → ((𝜑 → (𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶)) ↔ (𝜑 → (∅ ⊆ 𝐴 → Σ𝑘 ∈ ∅ 𝐶 = Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶))))
12 sseq1 3589 . . . . . 6 (𝑢 = 𝑧 → (𝑢𝐴𝑧𝐴))
13 iuneq1 4470 . . . . . . . 8 (𝑢 = 𝑧 𝑥𝑢 𝐵 = 𝑥𝑧 𝐵)
1413sumeq1d 14279 . . . . . . 7 (𝑢 = 𝑧 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑘 𝑥𝑧 𝐵𝐶)
15 sumeq1 14267 . . . . . . 7 (𝑢 = 𝑧 → Σ𝑥𝑢 Σ𝑘𝐵 𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶)
1614, 15eqeq12d 2625 . . . . . 6 (𝑢 = 𝑧 → (Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶 ↔ Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶))
1712, 16imbi12d 333 . . . . 5 (𝑢 = 𝑧 → ((𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶) ↔ (𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶)))
1817imbi2d 329 . . . 4 (𝑢 = 𝑧 → ((𝜑 → (𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶)) ↔ (𝜑 → (𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶))))
19 sseq1 3589 . . . . . 6 (𝑢 = (𝑧 ∪ {𝑤}) → (𝑢𝐴 ↔ (𝑧 ∪ {𝑤}) ⊆ 𝐴))
20 iuneq1 4470 . . . . . . . 8 (𝑢 = (𝑧 ∪ {𝑤}) → 𝑥𝑢 𝐵 = 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵)
2120sumeq1d 14279 . . . . . . 7 (𝑢 = (𝑧 ∪ {𝑤}) → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶)
22 sumeq1 14267 . . . . . . 7 (𝑢 = (𝑧 ∪ {𝑤}) → Σ𝑥𝑢 Σ𝑘𝐵 𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶)
2321, 22eqeq12d 2625 . . . . . 6 (𝑢 = (𝑧 ∪ {𝑤}) → (Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶 ↔ Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶))
2419, 23imbi12d 333 . . . . 5 (𝑢 = (𝑧 ∪ {𝑤}) → ((𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶) ↔ ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶)))
2524imbi2d 329 . . . 4 (𝑢 = (𝑧 ∪ {𝑤}) → ((𝜑 → (𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶)) ↔ (𝜑 → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶))))
26 sseq1 3589 . . . . . 6 (𝑢 = 𝐴 → (𝑢𝐴𝐴𝐴))
27 iuneq1 4470 . . . . . . . 8 (𝑢 = 𝐴 𝑥𝑢 𝐵 = 𝑥𝐴 𝐵)
2827sumeq1d 14279 . . . . . . 7 (𝑢 = 𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑘 𝑥𝐴 𝐵𝐶)
29 sumeq1 14267 . . . . . . 7 (𝑢 = 𝐴 → Σ𝑥𝑢 Σ𝑘𝐵 𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶)
3028, 29eqeq12d 2625 . . . . . 6 (𝑢 = 𝐴 → (Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶 ↔ Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶))
3126, 30imbi12d 333 . . . . 5 (𝑢 = 𝐴 → ((𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶) ↔ (𝐴𝐴 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶)))
3231imbi2d 329 . . . 4 (𝑢 = 𝐴 → ((𝜑 → (𝑢𝐴 → Σ𝑘 𝑥𝑢 𝐵𝐶 = Σ𝑥𝑢 Σ𝑘𝐵 𝐶)) ↔ (𝜑 → (𝐴𝐴 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶))))
33 sum0 14299 . . . . . 6 Σ𝑘 ∈ ∅ 𝐶 = 0
34 sum0 14299 . . . . . 6 Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶 = 0
3533, 34eqtr4i 2635 . . . . 5 Σ𝑘 ∈ ∅ 𝐶 = Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶
36352a1i 12 . . . 4 (𝜑 → (∅ ⊆ 𝐴 → Σ𝑘 ∈ ∅ 𝐶 = Σ𝑥 ∈ ∅ Σ𝑘𝐵 𝐶))
37 id 22 . . . . . . . . . 10 ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → (𝑧 ∪ {𝑤}) ⊆ 𝐴)
3837unssad 3752 . . . . . . . . 9 ((𝑧 ∪ {𝑤}) ⊆ 𝐴𝑧𝐴)
3938imim1i 61 . . . . . . . 8 ((𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶) → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶))
40 oveq1 6556 . . . . . . . . . . 11 𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶 → (Σ𝑘 𝑥𝑧 𝐵𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶) = (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶))
41 nfcv 2751 . . . . . . . . . . . . . . . . 17 𝑧𝐵
42 nfcsb1v 3515 . . . . . . . . . . . . . . . . 17 𝑥𝑧 / 𝑥𝐵
43 csbeq1a 3508 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
4441, 42, 43cbviun 4493 . . . . . . . . . . . . . . . 16 𝑥 ∈ {𝑤}𝐵 = 𝑧 ∈ {𝑤}𝑧 / 𝑥𝐵
45 vex 3176 . . . . . . . . . . . . . . . . 17 𝑤 ∈ V
46 csbeq1 3502 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑤𝑧 / 𝑥𝐵 = 𝑤 / 𝑥𝐵)
4745, 46iunxsn 4539 . . . . . . . . . . . . . . . 16 𝑧 ∈ {𝑤}𝑧 / 𝑥𝐵 = 𝑤 / 𝑥𝐵
4844, 47eqtri 2632 . . . . . . . . . . . . . . 15 𝑥 ∈ {𝑤}𝐵 = 𝑤 / 𝑥𝐵
4948ineq2i 3773 . . . . . . . . . . . . . 14 ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵) = ( 𝑥𝑧 𝐵𝑤 / 𝑥𝐵)
50 fsumiun.3 . . . . . . . . . . . . . . . 16 (𝜑Disj 𝑥𝐴 𝐵)
5150ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Disj 𝑥𝐴 𝐵)
5238adantl 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝑧𝐴)
53 simpr 476 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (𝑧 ∪ {𝑤}) ⊆ 𝐴)
5453unssbd 3753 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → {𝑤} ⊆ 𝐴)
55 simplr 788 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ¬ 𝑤𝑧)
56 disjsn 4192 . . . . . . . . . . . . . . . 16 ((𝑧 ∩ {𝑤}) = ∅ ↔ ¬ 𝑤𝑧)
5755, 56sylibr 223 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (𝑧 ∩ {𝑤}) = ∅)
58 disjiun 4573 . . . . . . . . . . . . . . 15 ((Disj 𝑥𝐴 𝐵 ∧ (𝑧𝐴 ∧ {𝑤} ⊆ 𝐴 ∧ (𝑧 ∩ {𝑤}) = ∅)) → ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵) = ∅)
5951, 52, 54, 57, 58syl13anc 1320 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵) = ∅)
6049, 59syl5eqr 2658 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ( 𝑥𝑧 𝐵𝑤 / 𝑥𝐵) = ∅)
61 iunxun 4541 . . . . . . . . . . . . . . 15 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 = ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵)
6248uneq2i 3726 . . . . . . . . . . . . . . 15 ( 𝑥𝑧 𝐵 𝑥 ∈ {𝑤}𝐵) = ( 𝑥𝑧 𝐵𝑤 / 𝑥𝐵)
6361, 62eqtri 2632 . . . . . . . . . . . . . 14 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 = ( 𝑥𝑧 𝐵𝑤 / 𝑥𝐵)
6463a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 = ( 𝑥𝑧 𝐵𝑤 / 𝑥𝐵))
652ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝐴 ∈ Fin)
66 ssfi 8065 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Fin ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (𝑧 ∪ {𝑤}) ∈ Fin)
6765, 53, 66syl2anc 691 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (𝑧 ∪ {𝑤}) ∈ Fin)
68 fsumiun.2 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
6968ralrimiva 2949 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥𝐴 𝐵 ∈ Fin)
7069ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ∀𝑥𝐴 𝐵 ∈ Fin)
71 ssralv 3629 . . . . . . . . . . . . . . 15 ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → (∀𝑥𝐴 𝐵 ∈ Fin → ∀𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 ∈ Fin))
7253, 70, 71sylc 63 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ∀𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 ∈ Fin)
73 iunfi 8137 . . . . . . . . . . . . . 14 (((𝑧 ∪ {𝑤}) ∈ Fin ∧ ∀𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 ∈ Fin) → 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 ∈ Fin)
7467, 72, 73syl2anc 691 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 ∈ Fin)
75 iunss1 4468 . . . . . . . . . . . . . . . 16 ((𝑧 ∪ {𝑤}) ⊆ 𝐴 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 𝑥𝐴 𝐵)
7675adantl 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵 𝑥𝐴 𝐵)
7776sselda 3568 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵) → 𝑘 𝑥𝐴 𝐵)
78 eliun 4460 . . . . . . . . . . . . . . . 16 (𝑘 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑘𝐵)
79 fsumiun.4 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
8079rexlimdvaa 3014 . . . . . . . . . . . . . . . . 17 (𝜑 → (∃𝑥𝐴 𝑘𝐵𝐶 ∈ ℂ))
8180ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (∃𝑥𝐴 𝑘𝐵𝐶 ∈ ℂ))
8278, 81syl5bi 231 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (𝑘 𝑥𝐴 𝐵𝐶 ∈ ℂ))
8382imp 444 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑘 𝑥𝐴 𝐵) → 𝐶 ∈ ℂ)
8477, 83syldan 486 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵) → 𝐶 ∈ ℂ)
8560, 64, 74, 84fsumsplit 14318 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = (Σ𝑘 𝑥𝑧 𝐵𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶))
86 eqidd 2611 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (𝑧 ∪ {𝑤}) = (𝑧 ∪ {𝑤}))
8753sselda 3568 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑥 ∈ (𝑧 ∪ {𝑤})) → 𝑥𝐴)
8879anassrs 678 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ ℂ)
8968, 88fsumcl 14311 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → Σ𝑘𝐵 𝐶 ∈ ℂ)
9089ralrimiva 2949 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑥𝐴 Σ𝑘𝐵 𝐶 ∈ ℂ)
9190ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → ∀𝑥𝐴 Σ𝑘𝐵 𝐶 ∈ ℂ)
9291r19.21bi 2916 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑥𝐴) → Σ𝑘𝐵 𝐶 ∈ ℂ)
9387, 92syldan 486 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) ∧ 𝑥 ∈ (𝑧 ∪ {𝑤})) → Σ𝑘𝐵 𝐶 ∈ ℂ)
9457, 86, 67, 93fsumsplit 14318 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶 = (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑥 ∈ {𝑤𝑘𝐵 𝐶))
95 nfcv 2751 . . . . . . . . . . . . . . . 16 𝑧Σ𝑘𝐵 𝐶
96 nfcv 2751 . . . . . . . . . . . . . . . . 17 𝑥𝐶
9742, 96nfsum 14269 . . . . . . . . . . . . . . . 16 𝑥Σ𝑘 𝑧 / 𝑥𝐵𝐶
9843sumeq1d 14279 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → Σ𝑘𝐵 𝐶 = Σ𝑘 𝑧 / 𝑥𝐵𝐶)
9995, 97, 98cbvsumi 14275 . . . . . . . . . . . . . . 15 Σ𝑥 ∈ {𝑤𝑘𝐵 𝐶 = Σ𝑧 ∈ {𝑤𝑘 𝑧 / 𝑥𝐵𝐶
10045snss 4259 . . . . . . . . . . . . . . . . . 18 (𝑤𝐴 ↔ {𝑤} ⊆ 𝐴)
10154, 100sylibr 223 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → 𝑤𝐴)
102 nfcsb1v 3515 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑤 / 𝑥𝐵
103102, 96nfsum 14269 . . . . . . . . . . . . . . . . . . 19 𝑥Σ𝑘 𝑤 / 𝑥𝐵𝐶
104103nfel1 2765 . . . . . . . . . . . . . . . . . 18 𝑥Σ𝑘 𝑤 / 𝑥𝐵𝐶 ∈ ℂ
105 csbeq1a 3508 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
106105sumeq1d 14279 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑤 → Σ𝑘𝐵 𝐶 = Σ𝑘 𝑤 / 𝑥𝐵𝐶)
107106eleq1d 2672 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑤 → (Σ𝑘𝐵 𝐶 ∈ ℂ ↔ Σ𝑘 𝑤 / 𝑥𝐵𝐶 ∈ ℂ))
108104, 107rspc 3276 . . . . . . . . . . . . . . . . 17 (𝑤𝐴 → (∀𝑥𝐴 Σ𝑘𝐵 𝐶 ∈ ℂ → Σ𝑘 𝑤 / 𝑥𝐵𝐶 ∈ ℂ))
109101, 91, 108sylc 63 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Σ𝑘 𝑤 / 𝑥𝐵𝐶 ∈ ℂ)
11046sumeq1d 14279 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑤 → Σ𝑘 𝑧 / 𝑥𝐵𝐶 = Σ𝑘 𝑤 / 𝑥𝐵𝐶)
111110sumsn 14319 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ V ∧ Σ𝑘 𝑤 / 𝑥𝐵𝐶 ∈ ℂ) → Σ𝑧 ∈ {𝑤𝑘 𝑧 / 𝑥𝐵𝐶 = Σ𝑘 𝑤 / 𝑥𝐵𝐶)
11245, 109, 111sylancr 694 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Σ𝑧 ∈ {𝑤𝑘 𝑧 / 𝑥𝐵𝐶 = Σ𝑘 𝑤 / 𝑥𝐵𝐶)
11399, 112syl5eq 2656 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Σ𝑥 ∈ {𝑤𝑘𝐵 𝐶 = Σ𝑘 𝑤 / 𝑥𝐵𝐶)
114113oveq2d 6565 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑥 ∈ {𝑤𝑘𝐵 𝐶) = (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶))
11594, 114eqtrd 2644 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶 = (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶))
11685, 115eqeq12d 2625 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶 ↔ (Σ𝑘 𝑥𝑧 𝐵𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶) = (Σ𝑥𝑧 Σ𝑘𝐵 𝐶 + Σ𝑘 𝑤 / 𝑥𝐵𝐶)))
11740, 116syl5ibr 235 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑤𝑧) ∧ (𝑧 ∪ {𝑤}) ⊆ 𝐴) → (Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶))
118117ex 449 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑤𝑧) → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → (Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶)))
119118a2d 29 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑤𝑧) → (((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶) → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶)))
12039, 119syl5 33 . . . . . . 7 ((𝜑 ∧ ¬ 𝑤𝑧) → ((𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶) → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶)))
121120expcom 450 . . . . . 6 𝑤𝑧 → (𝜑 → ((𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶) → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶))))
122121a2d 29 . . . . 5 𝑤𝑧 → ((𝜑 → (𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶)) → (𝜑 → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶))))
123122adantl 481 . . . 4 ((𝑧 ∈ Fin ∧ ¬ 𝑤𝑧) → ((𝜑 → (𝑧𝐴 → Σ𝑘 𝑥𝑧 𝐵𝐶 = Σ𝑥𝑧 Σ𝑘𝐵 𝐶)) → (𝜑 → ((𝑧 ∪ {𝑤}) ⊆ 𝐴 → Σ𝑘 𝑥 ∈ (𝑧 ∪ {𝑤})𝐵𝐶 = Σ𝑥 ∈ (𝑧 ∪ {𝑤})Σ𝑘𝐵 𝐶))))
12411, 18, 25, 32, 36, 123findcard2s 8086 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝐴 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶)))
1252, 124mpcom 37 . 2 (𝜑 → (𝐴𝐴 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶))
1261, 125mpi 20 1 (𝜑 → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑥𝐴 Σ𝑘𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  csb 3499  cun 3538  cin 3539  wss 3540  c0 3874  {csn 4125   ciun 4455  Disj wdisj 4553  (class class class)co 6549  Fincfn 7841  cc 9813  0cc0 9815   + caddc 9818  Σcsu 14264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265
This theorem is referenced by:  hashiun  14395  incexc2  14409  musum  24717  fsumiunss  38642
  Copyright terms: Public domain W3C validator