MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climfsum Structured version   Visualization version   GIF version

Theorem climfsum 14393
Description: Limit of a finite sum of converging sequences. Note that 𝐹(𝑘) is a collection of functions with implicit parameter 𝑘, each of which converges to 𝐵(𝑘) as 𝑛 ⇝ +∞. (Contributed by Mario Carneiro, 22-Jul-2014.) (Proof shortened by Mario Carneiro, 22-May-2016.)
Hypotheses
Ref Expression
climfsum.1 𝑍 = (ℤ𝑀)
climfsum.2 (𝜑𝑀 ∈ ℤ)
climfsum.3 (𝜑𝐴 ∈ Fin)
climfsum.5 ((𝜑𝑘𝐴) → 𝐹𝐵)
climfsum.6 (𝜑𝐻𝑊)
climfsum.7 ((𝜑 ∧ (𝑘𝐴𝑛𝑍)) → (𝐹𝑛) ∈ ℂ)
climfsum.8 ((𝜑𝑛𝑍) → (𝐻𝑛) = Σ𝑘𝐴 (𝐹𝑛))
Assertion
Ref Expression
climfsum (𝜑𝐻 ⇝ Σ𝑘𝐴 𝐵)
Distinct variable groups:   𝑘,𝑛,𝐴   𝑛,𝐻   𝜑,𝑘,𝑛   𝑘,𝑍,𝑛   𝐵,𝑛   𝑛,𝐹   𝑛,𝑀
Allowed substitution hints:   𝐵(𝑘)   𝐹(𝑘)   𝐻(𝑘)   𝑀(𝑘)   𝑊(𝑘,𝑛)

Proof of Theorem climfsum
StepHypRef Expression
1 climfsum.8 . . . 4 ((𝜑𝑛𝑍) → (𝐻𝑛) = Σ𝑘𝐴 (𝐹𝑛))
21mpteq2dva 4672 . . 3 (𝜑 → (𝑛𝑍 ↦ (𝐻𝑛)) = (𝑛𝑍 ↦ Σ𝑘𝐴 (𝐹𝑛)))
3 climfsum.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
4 uzssz 11583 . . . . . . . 8 (ℤ𝑀) ⊆ ℤ
53, 4eqsstri 3598 . . . . . . 7 𝑍 ⊆ ℤ
6 zssre 11261 . . . . . . 7 ℤ ⊆ ℝ
75, 6sstri 3577 . . . . . 6 𝑍 ⊆ ℝ
87a1i 11 . . . . 5 (𝜑𝑍 ⊆ ℝ)
9 climfsum.3 . . . . 5 (𝜑𝐴 ∈ Fin)
10 fvex 6113 . . . . . 6 (𝐹𝑛) ∈ V
1110a1i 11 . . . . 5 ((𝜑 ∧ (𝑛𝑍𝑘𝐴)) → (𝐹𝑛) ∈ V)
12 climfsum.5 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐹𝐵)
13 climfsum.2 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
1413adantr 480 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝑀 ∈ ℤ)
15 climrel 14071 . . . . . . . . . 10 Rel ⇝
1615brrelexi 5082 . . . . . . . . 9 (𝐹𝐵𝐹 ∈ V)
1712, 16syl 17 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐹 ∈ V)
18 eqid 2610 . . . . . . . . 9 (𝑛𝑍 ↦ (𝐹𝑛)) = (𝑛𝑍 ↦ (𝐹𝑛))
193, 18climmpt 14150 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ V) → (𝐹𝐵 ↔ (𝑛𝑍 ↦ (𝐹𝑛)) ⇝ 𝐵))
2014, 17, 19syl2anc 691 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐹𝐵 ↔ (𝑛𝑍 ↦ (𝐹𝑛)) ⇝ 𝐵))
2112, 20mpbid 221 . . . . . 6 ((𝜑𝑘𝐴) → (𝑛𝑍 ↦ (𝐹𝑛)) ⇝ 𝐵)
22 climfsum.7 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝐴𝑛𝑍)) → (𝐹𝑛) ∈ ℂ)
2322anassrs 678 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑛𝑍) → (𝐹𝑛) ∈ ℂ)
2423, 18fmptd 6292 . . . . . . 7 ((𝜑𝑘𝐴) → (𝑛𝑍 ↦ (𝐹𝑛)):𝑍⟶ℂ)
253, 14, 24rlimclim 14125 . . . . . 6 ((𝜑𝑘𝐴) → ((𝑛𝑍 ↦ (𝐹𝑛)) ⇝𝑟 𝐵 ↔ (𝑛𝑍 ↦ (𝐹𝑛)) ⇝ 𝐵))
2621, 25mpbird 246 . . . . 5 ((𝜑𝑘𝐴) → (𝑛𝑍 ↦ (𝐹𝑛)) ⇝𝑟 𝐵)
278, 9, 11, 26fsumrlim 14384 . . . 4 (𝜑 → (𝑛𝑍 ↦ Σ𝑘𝐴 (𝐹𝑛)) ⇝𝑟 Σ𝑘𝐴 𝐵)
289adantr 480 . . . . . . 7 ((𝜑𝑛𝑍) → 𝐴 ∈ Fin)
2922anass1rs 845 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑘𝐴) → (𝐹𝑛) ∈ ℂ)
3028, 29fsumcl 14311 . . . . . 6 ((𝜑𝑛𝑍) → Σ𝑘𝐴 (𝐹𝑛) ∈ ℂ)
31 eqid 2610 . . . . . 6 (𝑛𝑍 ↦ Σ𝑘𝐴 (𝐹𝑛)) = (𝑛𝑍 ↦ Σ𝑘𝐴 (𝐹𝑛))
3230, 31fmptd 6292 . . . . 5 (𝜑 → (𝑛𝑍 ↦ Σ𝑘𝐴 (𝐹𝑛)):𝑍⟶ℂ)
333, 13, 32rlimclim 14125 . . . 4 (𝜑 → ((𝑛𝑍 ↦ Σ𝑘𝐴 (𝐹𝑛)) ⇝𝑟 Σ𝑘𝐴 𝐵 ↔ (𝑛𝑍 ↦ Σ𝑘𝐴 (𝐹𝑛)) ⇝ Σ𝑘𝐴 𝐵))
3427, 33mpbid 221 . . 3 (𝜑 → (𝑛𝑍 ↦ Σ𝑘𝐴 (𝐹𝑛)) ⇝ Σ𝑘𝐴 𝐵)
352, 34eqbrtrd 4605 . 2 (𝜑 → (𝑛𝑍 ↦ (𝐻𝑛)) ⇝ Σ𝑘𝐴 𝐵)
36 climfsum.6 . . 3 (𝜑𝐻𝑊)
37 eqid 2610 . . . 4 (𝑛𝑍 ↦ (𝐻𝑛)) = (𝑛𝑍 ↦ (𝐻𝑛))
383, 37climmpt 14150 . . 3 ((𝑀 ∈ ℤ ∧ 𝐻𝑊) → (𝐻 ⇝ Σ𝑘𝐴 𝐵 ↔ (𝑛𝑍 ↦ (𝐻𝑛)) ⇝ Σ𝑘𝐴 𝐵))
3913, 36, 38syl2anc 691 . 2 (𝜑 → (𝐻 ⇝ Σ𝑘𝐴 𝐵 ↔ (𝑛𝑍 ↦ (𝐻𝑛)) ⇝ Σ𝑘𝐴 𝐵))
4035, 39mpbird 246 1 (𝜑𝐻 ⇝ Σ𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  wss 3540   class class class wbr 4583  cmpt 4643  cfv 5804  Fincfn 7841  cc 9813  cr 9814  cz 11254  cuz 11563  cli 14063  𝑟 crli 14064  Σcsu 14264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265
This theorem is referenced by:  itg1climres  23287  plyeq0lem  23770
  Copyright terms: Public domain W3C validator