MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1bi Structured version   Visualization version   GIF version

Theorem necon1bi 2810
Description: Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 22-Nov-2019.)
Hypothesis
Ref Expression
necon1bi.1 (𝐴𝐵𝜑)
Assertion
Ref Expression
necon1bi 𝜑𝐴 = 𝐵)

Proof of Theorem necon1bi
StepHypRef Expression
1 df-ne 2782 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon1bi.1 . . 3 (𝐴𝐵𝜑)
31, 2sylbir 224 . 2 𝐴 = 𝐵𝜑)
43con1i 143 1 𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1475  wne 2780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-ne 2782
This theorem is referenced by:  necon4ai  2813  fvbr0  6125  peano5  6981  1stnpr  7063  2ndnpr  7064  1st2val  7085  2nd2val  7086  eceqoveq  7740  mapprc  7748  ixp0  7827  setind  8493  hashfun  13084  hashf1lem2  13097  iswrdi  13164  dvdsrval  18468  thlle  19860  konigsberg  26514  hatomistici  28605  esumrnmpt2  29457  mppsval  30723  setindtr  36609  fourierdlem72  39071  afvpcfv0  39875  konigsberg-av  41427
  Copyright terms: Public domain W3C validator