MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpcn3 Structured version   Visualization version   GIF version

Theorem cxpcn3 24289
Description: Extend continuity of the complex power function to a base of zero, as long as the exponent has strictly positive real part. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
cxpcn3.d 𝐷 = (ℜ “ ℝ+)
cxpcn3.j 𝐽 = (TopOpen‘ℂfld)
cxpcn3.k 𝐾 = (𝐽t (0[,)+∞))
cxpcn3.l 𝐿 = (𝐽t 𝐷)
Assertion
Ref Expression
cxpcn3 (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)   𝐿(𝑥,𝑦)

Proof of Theorem cxpcn3
Dummy variables 𝑎 𝑏 𝑑 𝑒 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rge0ssre 12151 . . . . . . 7 (0[,)+∞) ⊆ ℝ
2 ax-resscn 9872 . . . . . . 7 ℝ ⊆ ℂ
31, 2sstri 3577 . . . . . 6 (0[,)+∞) ⊆ ℂ
43sseli 3564 . . . . 5 (𝑥 ∈ (0[,)+∞) → 𝑥 ∈ ℂ)
5 cxpcn3.d . . . . . . 7 𝐷 = (ℜ “ ℝ+)
6 cnvimass 5404 . . . . . . . 8 (ℜ “ ℝ+) ⊆ dom ℜ
7 ref 13700 . . . . . . . . 9 ℜ:ℂ⟶ℝ
87fdmi 5965 . . . . . . . 8 dom ℜ = ℂ
96, 8sseqtri 3600 . . . . . . 7 (ℜ “ ℝ+) ⊆ ℂ
105, 9eqsstri 3598 . . . . . 6 𝐷 ⊆ ℂ
1110sseli 3564 . . . . 5 (𝑦𝐷𝑦 ∈ ℂ)
12 cxpcl 24220 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑐𝑦) ∈ ℂ)
134, 11, 12syl2an 493 . . . 4 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦𝐷) → (𝑥𝑐𝑦) ∈ ℂ)
1413rgen2 2958 . . 3 𝑥 ∈ (0[,)+∞)∀𝑦𝐷 (𝑥𝑐𝑦) ∈ ℂ
15 eqid 2610 . . . 4 (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) = (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))
1615fmpt2 7126 . . 3 (∀𝑥 ∈ (0[,)+∞)∀𝑦𝐷 (𝑥𝑐𝑦) ∈ ℂ ↔ (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ)
1714, 16mpbi 219 . 2 (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ
18 cxpcn3.j . . . . . . . . . . . . 13 𝐽 = (TopOpen‘ℂfld)
1918cnfldtopon 22396 . . . . . . . . . . . 12 𝐽 ∈ (TopOn‘ℂ)
20 rpre 11715 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
21 rpge0 11721 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → 0 ≤ 𝑥)
22 elrege0 12149 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
2320, 21, 22sylanbrc 695 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+𝑥 ∈ (0[,)+∞))
2423ssriv 3572 . . . . . . . . . . . . 13 + ⊆ (0[,)+∞)
2524, 3sstri 3577 . . . . . . . . . . . 12 + ⊆ ℂ
26 resttopon 20775 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘ℂ) ∧ ℝ+ ⊆ ℂ) → (𝐽t+) ∈ (TopOn‘ℝ+))
2719, 25, 26mp2an 704 . . . . . . . . . . 11 (𝐽t+) ∈ (TopOn‘ℝ+)
2827toponunii 20547 . . . . . . . . . . . 12 + = (𝐽t+)
2928restid 15917 . . . . . . . . . . 11 ((𝐽t+) ∈ (TopOn‘ℝ+) → ((𝐽t+) ↾t+) = (𝐽t+))
3027, 29ax-mp 5 . . . . . . . . . 10 ((𝐽t+) ↾t+) = (𝐽t+)
3130eqcomi 2619 . . . . . . . . 9 (𝐽t+) = ((𝐽t+) ↾t+)
3227a1i 11 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝐽t+) ∈ (TopOn‘ℝ+))
33 ssid 3587 . . . . . . . . . 10 + ⊆ ℝ+
3433a1i 11 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → ℝ+ ⊆ ℝ+)
35 cxpcn3.l . . . . . . . . 9 𝐿 = (𝐽t 𝐷)
3619a1i 11 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → 𝐽 ∈ (TopOn‘ℂ))
3710a1i 11 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → 𝐷 ⊆ ℂ)
38 eqid 2610 . . . . . . . . . . 11 (𝐽t+) = (𝐽t+)
3918, 38cxpcn2 24287 . . . . . . . . . 10 (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (𝑥𝑐𝑦)) ∈ (((𝐽t+) ×t 𝐽) Cn 𝐽)
4039a1i 11 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (𝑥𝑐𝑦)) ∈ (((𝐽t+) ×t 𝐽) Cn 𝐽))
4131, 32, 34, 35, 36, 37, 40cnmpt2res 21290 . . . . . . . 8 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝑥 ∈ ℝ+, 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐽t+) ×t 𝐿) Cn 𝐽))
42 elrege0 12149 . . . . . . . . . . . . 13 (𝑢 ∈ (0[,)+∞) ↔ (𝑢 ∈ ℝ ∧ 0 ≤ 𝑢))
4342simplbi 475 . . . . . . . . . . . 12 (𝑢 ∈ (0[,)+∞) → 𝑢 ∈ ℝ)
4443adantr 480 . . . . . . . . . . 11 ((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) → 𝑢 ∈ ℝ)
4544adantr 480 . . . . . . . . . 10 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → 𝑢 ∈ ℝ)
46 simpr 476 . . . . . . . . . 10 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → 0 < 𝑢)
4745, 46elrpd 11745 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → 𝑢 ∈ ℝ+)
48 simplr 788 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → 𝑣𝐷)
49 opelxp 5070 . . . . . . . . 9 (⟨𝑢, 𝑣⟩ ∈ (ℝ+ × 𝐷) ↔ (𝑢 ∈ ℝ+𝑣𝐷))
5047, 48, 49sylanbrc 695 . . . . . . . 8 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → ⟨𝑢, 𝑣⟩ ∈ (ℝ+ × 𝐷))
51 resttopon 20775 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐽t 𝐷) ∈ (TopOn‘𝐷))
5219, 10, 51mp2an 704 . . . . . . . . . . . 12 (𝐽t 𝐷) ∈ (TopOn‘𝐷)
5335, 52eqeltri 2684 . . . . . . . . . . 11 𝐿 ∈ (TopOn‘𝐷)
54 txtopon 21204 . . . . . . . . . . 11 (((𝐽t+) ∈ (TopOn‘ℝ+) ∧ 𝐿 ∈ (TopOn‘𝐷)) → ((𝐽t+) ×t 𝐿) ∈ (TopOn‘(ℝ+ × 𝐷)))
5527, 53, 54mp2an 704 . . . . . . . . . 10 ((𝐽t+) ×t 𝐿) ∈ (TopOn‘(ℝ+ × 𝐷))
5655toponunii 20547 . . . . . . . . 9 (ℝ+ × 𝐷) = ((𝐽t+) ×t 𝐿)
5756cncnpi 20892 . . . . . . . 8 (((𝑥 ∈ ℝ+, 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐽t+) ×t 𝐿) Cn 𝐽) ∧ ⟨𝑢, 𝑣⟩ ∈ (ℝ+ × 𝐷)) → (𝑥 ∈ ℝ+, 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((((𝐽t+) ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
5841, 50, 57syl2anc 691 . . . . . . 7 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝑥 ∈ ℝ+, 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((((𝐽t+) ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
59 ssid 3587 . . . . . . . 8 𝐷𝐷
60 resmpt2 6656 . . . . . . . 8 ((ℝ+ ⊆ (0[,)+∞) ∧ 𝐷𝐷) → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ↾ (ℝ+ × 𝐷)) = (𝑥 ∈ ℝ+, 𝑦𝐷 ↦ (𝑥𝑐𝑦)))
6124, 59, 60mp2an 704 . . . . . . 7 ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ↾ (ℝ+ × 𝐷)) = (𝑥 ∈ ℝ+, 𝑦𝐷 ↦ (𝑥𝑐𝑦))
62 cxpcn3.k . . . . . . . . . . . 12 𝐾 = (𝐽t (0[,)+∞))
63 resttopon 20775 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘ℂ) ∧ (0[,)+∞) ⊆ ℂ) → (𝐽t (0[,)+∞)) ∈ (TopOn‘(0[,)+∞)))
6419, 3, 63mp2an 704 . . . . . . . . . . . 12 (𝐽t (0[,)+∞)) ∈ (TopOn‘(0[,)+∞))
6562, 64eqeltri 2684 . . . . . . . . . . 11 𝐾 ∈ (TopOn‘(0[,)+∞))
66 ioorp 12122 . . . . . . . . . . . . . 14 (0(,)+∞) = ℝ+
67 iooretop 22379 . . . . . . . . . . . . . 14 (0(,)+∞) ∈ (topGen‘ran (,))
6866, 67eqeltrri 2685 . . . . . . . . . . . . 13 + ∈ (topGen‘ran (,))
69 retop 22375 . . . . . . . . . . . . . . 15 (topGen‘ran (,)) ∈ Top
70 ovex 6577 . . . . . . . . . . . . . . 15 (0[,)+∞) ∈ V
71 restopnb 20789 . . . . . . . . . . . . . . 15 ((((topGen‘ran (,)) ∈ Top ∧ (0[,)+∞) ∈ V) ∧ (ℝ+ ∈ (topGen‘ran (,)) ∧ ℝ+ ⊆ (0[,)+∞) ∧ ℝ+ ⊆ ℝ+)) → (ℝ+ ∈ (topGen‘ran (,)) ↔ ℝ+ ∈ ((topGen‘ran (,)) ↾t (0[,)+∞))))
7269, 70, 71mpanl12 714 . . . . . . . . . . . . . 14 ((ℝ+ ∈ (topGen‘ran (,)) ∧ ℝ+ ⊆ (0[,)+∞) ∧ ℝ+ ⊆ ℝ+) → (ℝ+ ∈ (topGen‘ran (,)) ↔ ℝ+ ∈ ((topGen‘ran (,)) ↾t (0[,)+∞))))
7368, 24, 33, 72mp3an 1416 . . . . . . . . . . . . 13 (ℝ+ ∈ (topGen‘ran (,)) ↔ ℝ+ ∈ ((topGen‘ran (,)) ↾t (0[,)+∞)))
7468, 73mpbi 219 . . . . . . . . . . . 12 + ∈ ((topGen‘ran (,)) ↾t (0[,)+∞))
75 eqid 2610 . . . . . . . . . . . . . . 15 (topGen‘ran (,)) = (topGen‘ran (,))
7618, 75rerest 22415 . . . . . . . . . . . . . 14 ((0[,)+∞) ⊆ ℝ → (𝐽t (0[,)+∞)) = ((topGen‘ran (,)) ↾t (0[,)+∞)))
771, 76ax-mp 5 . . . . . . . . . . . . 13 (𝐽t (0[,)+∞)) = ((topGen‘ran (,)) ↾t (0[,)+∞))
7862, 77eqtri 2632 . . . . . . . . . . . 12 𝐾 = ((topGen‘ran (,)) ↾t (0[,)+∞))
7974, 78eleqtrri 2687 . . . . . . . . . . 11 +𝐾
80 toponmax 20543 . . . . . . . . . . . 12 (𝐿 ∈ (TopOn‘𝐷) → 𝐷𝐿)
8153, 80ax-mp 5 . . . . . . . . . . 11 𝐷𝐿
82 txrest 21244 . . . . . . . . . . 11 (((𝐾 ∈ (TopOn‘(0[,)+∞)) ∧ 𝐿 ∈ (TopOn‘𝐷)) ∧ (ℝ+𝐾𝐷𝐿)) → ((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) = ((𝐾t+) ×t (𝐿t 𝐷)))
8365, 53, 79, 81, 82mp4an 705 . . . . . . . . . 10 ((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) = ((𝐾t+) ×t (𝐿t 𝐷))
8462oveq1i 6559 . . . . . . . . . . . 12 (𝐾t+) = ((𝐽t (0[,)+∞)) ↾t+)
85 restabs 20779 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘ℂ) ∧ ℝ+ ⊆ (0[,)+∞) ∧ (0[,)+∞) ∈ V) → ((𝐽t (0[,)+∞)) ↾t+) = (𝐽t+))
8619, 24, 70, 85mp3an 1416 . . . . . . . . . . . 12 ((𝐽t (0[,)+∞)) ↾t+) = (𝐽t+)
8784, 86eqtri 2632 . . . . . . . . . . 11 (𝐾t+) = (𝐽t+)
8853toponunii 20547 . . . . . . . . . . . . 13 𝐷 = 𝐿
8988restid 15917 . . . . . . . . . . . 12 (𝐿 ∈ (TopOn‘𝐷) → (𝐿t 𝐷) = 𝐿)
9053, 89ax-mp 5 . . . . . . . . . . 11 (𝐿t 𝐷) = 𝐿
9187, 90oveq12i 6561 . . . . . . . . . 10 ((𝐾t+) ×t (𝐿t 𝐷)) = ((𝐽t+) ×t 𝐿)
9283, 91eqtri 2632 . . . . . . . . 9 ((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) = ((𝐽t+) ×t 𝐿)
9392oveq1i 6559 . . . . . . . 8 (((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) CnP 𝐽) = (((𝐽t+) ×t 𝐿) CnP 𝐽)
9493fveq1i 6104 . . . . . . 7 ((((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) CnP 𝐽)‘⟨𝑢, 𝑣⟩) = ((((𝐽t+) ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩)
9558, 61, 943eltr4g 2705 . . . . . 6 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ↾ (ℝ+ × 𝐷)) ∈ ((((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
96 txtopon 21204 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘(0[,)+∞)) ∧ 𝐿 ∈ (TopOn‘𝐷)) → (𝐾 ×t 𝐿) ∈ (TopOn‘((0[,)+∞) × 𝐷)))
9765, 53, 96mp2an 704 . . . . . . . . 9 (𝐾 ×t 𝐿) ∈ (TopOn‘((0[,)+∞) × 𝐷))
9897topontopi 20546 . . . . . . . 8 (𝐾 ×t 𝐿) ∈ Top
9998a1i 11 . . . . . . 7 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝐾 ×t 𝐿) ∈ Top)
100 xpss1 5151 . . . . . . . 8 (ℝ+ ⊆ (0[,)+∞) → (ℝ+ × 𝐷) ⊆ ((0[,)+∞) × 𝐷))
10124, 100mp1i 13 . . . . . . 7 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (ℝ+ × 𝐷) ⊆ ((0[,)+∞) × 𝐷))
102 txopn 21215 . . . . . . . . . 10 (((𝐾 ∈ (TopOn‘(0[,)+∞)) ∧ 𝐿 ∈ (TopOn‘𝐷)) ∧ (ℝ+𝐾𝐷𝐿)) → (ℝ+ × 𝐷) ∈ (𝐾 ×t 𝐿))
10365, 53, 79, 81, 102mp4an 705 . . . . . . . . 9 (ℝ+ × 𝐷) ∈ (𝐾 ×t 𝐿)
104 isopn3i 20696 . . . . . . . . 9 (((𝐾 ×t 𝐿) ∈ Top ∧ (ℝ+ × 𝐷) ∈ (𝐾 ×t 𝐿)) → ((int‘(𝐾 ×t 𝐿))‘(ℝ+ × 𝐷)) = (ℝ+ × 𝐷))
10598, 103, 104mp2an 704 . . . . . . . 8 ((int‘(𝐾 ×t 𝐿))‘(ℝ+ × 𝐷)) = (ℝ+ × 𝐷)
10650, 105syl6eleqr 2699 . . . . . . 7 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → ⟨𝑢, 𝑣⟩ ∈ ((int‘(𝐾 ×t 𝐿))‘(ℝ+ × 𝐷)))
10717a1i 11 . . . . . . 7 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ)
10865topontopi 20546 . . . . . . . . 9 𝐾 ∈ Top
10953topontopi 20546 . . . . . . . . 9 𝐿 ∈ Top
11065toponunii 20547 . . . . . . . . 9 (0[,)+∞) = 𝐾
111108, 109, 110, 88txunii 21206 . . . . . . . 8 ((0[,)+∞) × 𝐷) = (𝐾 ×t 𝐿)
11219toponunii 20547 . . . . . . . 8 ℂ = 𝐽
113111, 112cnprest 20903 . . . . . . 7 ((((𝐾 ×t 𝐿) ∈ Top ∧ (ℝ+ × 𝐷) ⊆ ((0[,)+∞) × 𝐷)) ∧ (⟨𝑢, 𝑣⟩ ∈ ((int‘(𝐾 ×t 𝐿))‘(ℝ+ × 𝐷)) ∧ (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ)) → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩) ↔ ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ↾ (ℝ+ × 𝐷)) ∈ ((((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) CnP 𝐽)‘⟨𝑢, 𝑣⟩)))
11499, 101, 106, 107, 113syl22anc 1319 . . . . . 6 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩) ↔ ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ↾ (ℝ+ × 𝐷)) ∈ ((((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) CnP 𝐽)‘⟨𝑢, 𝑣⟩)))
11595, 114mpbird 246 . . . . 5 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
11617a1i 11 . . . . . . . 8 (𝑣𝐷 → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ)
117 eqid 2610 . . . . . . . . . . 11 (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2) = (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2)
118 eqid 2610 . . . . . . . . . . 11 if((if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2) ≤ (𝑒𝑐(1 / (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2))), (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2), (𝑒𝑐(1 / (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2)))) = if((if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2) ≤ (𝑒𝑐(1 / (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2))), (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2), (𝑒𝑐(1 / (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2))))
1195, 18, 62, 35, 117, 118cxpcn3lem 24288 . . . . . . . . . 10 ((𝑣𝐷𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝑒))
120119ralrimiva 2949 . . . . . . . . 9 (𝑣𝐷 → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝑒))
121 0e0icopnf 12153 . . . . . . . . . . . . . . . . . 18 0 ∈ (0[,)+∞)
122121a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 0 ∈ (0[,)+∞))
123 simprl 790 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 𝑎 ∈ (0[,)+∞))
124122, 123ovresd 6699 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) = (0(abs ∘ − )𝑎))
125 0cn 9911 . . . . . . . . . . . . . . . . 17 0 ∈ ℂ
1263, 123sseldi 3566 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 𝑎 ∈ ℂ)
127 eqid 2610 . . . . . . . . . . . . . . . . . 18 (abs ∘ − ) = (abs ∘ − )
128127cnmetdval 22384 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (0(abs ∘ − )𝑎) = (abs‘(0 − 𝑎)))
129125, 126, 128sylancr 694 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0(abs ∘ − )𝑎) = (abs‘(0 − 𝑎)))
130 df-neg 10148 . . . . . . . . . . . . . . . . . 18 -𝑎 = (0 − 𝑎)
131130fveq2i 6106 . . . . . . . . . . . . . . . . 17 (abs‘-𝑎) = (abs‘(0 − 𝑎))
132126absnegd 14036 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (abs‘-𝑎) = (abs‘𝑎))
133131, 132syl5eqr 2658 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (abs‘(0 − 𝑎)) = (abs‘𝑎))
134124, 129, 1333eqtrd 2648 . . . . . . . . . . . . . . 15 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) = (abs‘𝑎))
135134breq1d 4593 . . . . . . . . . . . . . 14 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → ((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ↔ (abs‘𝑎) < 𝑑))
136 simpl 472 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 𝑣𝐷)
137 simprr 792 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 𝑏𝐷)
138136, 137ovresd 6699 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) = (𝑣(abs ∘ − )𝑏))
13910, 136sseldi 3566 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 𝑣 ∈ ℂ)
14010, 137sseldi 3566 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 𝑏 ∈ ℂ)
141127cnmetdval 22384 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑣(abs ∘ − )𝑏) = (abs‘(𝑣𝑏)))
142139, 140, 141syl2anc 691 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (𝑣(abs ∘ − )𝑏) = (abs‘(𝑣𝑏)))
143138, 142eqtrd 2644 . . . . . . . . . . . . . . 15 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) = (abs‘(𝑣𝑏)))
144143breq1d 4593 . . . . . . . . . . . . . 14 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → ((𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑 ↔ (abs‘(𝑣𝑏)) < 𝑑))
145135, 144anbi12d 743 . . . . . . . . . . . . 13 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) ↔ ((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑)))
146 oveq12 6558 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 0 ∧ 𝑦 = 𝑣) → (𝑥𝑐𝑦) = (0↑𝑐𝑣))
147 ovex 6577 . . . . . . . . . . . . . . . . . . 19 (0↑𝑐𝑣) ∈ V
148146, 15, 147ovmpt2a 6689 . . . . . . . . . . . . . . . . . 18 ((0 ∈ (0[,)+∞) ∧ 𝑣𝐷) → (0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣) = (0↑𝑐𝑣))
149121, 136, 148sylancr 694 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣) = (0↑𝑐𝑣))
1505eleq2i 2680 . . . . . . . . . . . . . . . . . . . . 21 (𝑣𝐷𝑣 ∈ (ℜ “ ℝ+))
151 ffn 5958 . . . . . . . . . . . . . . . . . . . . . 22 (ℜ:ℂ⟶ℝ → ℜ Fn ℂ)
152 elpreima 6245 . . . . . . . . . . . . . . . . . . . . . 22 (ℜ Fn ℂ → (𝑣 ∈ (ℜ “ ℝ+) ↔ (𝑣 ∈ ℂ ∧ (ℜ‘𝑣) ∈ ℝ+)))
1537, 151, 152mp2b 10 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 ∈ (ℜ “ ℝ+) ↔ (𝑣 ∈ ℂ ∧ (ℜ‘𝑣) ∈ ℝ+))
154150, 153bitri 263 . . . . . . . . . . . . . . . . . . . 20 (𝑣𝐷 ↔ (𝑣 ∈ ℂ ∧ (ℜ‘𝑣) ∈ ℝ+))
155154simplbi 475 . . . . . . . . . . . . . . . . . . 19 (𝑣𝐷𝑣 ∈ ℂ)
156154simprbi 479 . . . . . . . . . . . . . . . . . . . . 21 (𝑣𝐷 → (ℜ‘𝑣) ∈ ℝ+)
157156rpne0d 11753 . . . . . . . . . . . . . . . . . . . 20 (𝑣𝐷 → (ℜ‘𝑣) ≠ 0)
158 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = 0 → (ℜ‘𝑣) = (ℜ‘0))
159 re0 13740 . . . . . . . . . . . . . . . . . . . . . 22 (ℜ‘0) = 0
160158, 159syl6eq 2660 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 0 → (ℜ‘𝑣) = 0)
161160necon3i 2814 . . . . . . . . . . . . . . . . . . . 20 ((ℜ‘𝑣) ≠ 0 → 𝑣 ≠ 0)
162157, 161syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑣𝐷𝑣 ≠ 0)
163155, 1620cxpd 24256 . . . . . . . . . . . . . . . . . 18 (𝑣𝐷 → (0↑𝑐𝑣) = 0)
164163adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0↑𝑐𝑣) = 0)
165149, 164eqtrd 2644 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣) = 0)
166 oveq12 6558 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝑥𝑐𝑦) = (𝑎𝑐𝑏))
167 ovex 6577 . . . . . . . . . . . . . . . . . 18 (𝑎𝑐𝑏) ∈ V
168166, 15, 167ovmpt2a 6689 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷) → (𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏) = (𝑎𝑐𝑏))
169168adantl 481 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏) = (𝑎𝑐𝑏))
170165, 169oveq12d 6567 . . . . . . . . . . . . . . 15 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) = (0(abs ∘ − )(𝑎𝑐𝑏)))
171126, 140cxpcld 24254 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (𝑎𝑐𝑏) ∈ ℂ)
172127cnmetdval 22384 . . . . . . . . . . . . . . . 16 ((0 ∈ ℂ ∧ (𝑎𝑐𝑏) ∈ ℂ) → (0(abs ∘ − )(𝑎𝑐𝑏)) = (abs‘(0 − (𝑎𝑐𝑏))))
173125, 171, 172sylancr 694 . . . . . . . . . . . . . . 15 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0(abs ∘ − )(𝑎𝑐𝑏)) = (abs‘(0 − (𝑎𝑐𝑏))))
174 df-neg 10148 . . . . . . . . . . . . . . . . 17 -(𝑎𝑐𝑏) = (0 − (𝑎𝑐𝑏))
175174fveq2i 6106 . . . . . . . . . . . . . . . 16 (abs‘-(𝑎𝑐𝑏)) = (abs‘(0 − (𝑎𝑐𝑏)))
176171absnegd 14036 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (abs‘-(𝑎𝑐𝑏)) = (abs‘(𝑎𝑐𝑏)))
177175, 176syl5eqr 2658 . . . . . . . . . . . . . . 15 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (abs‘(0 − (𝑎𝑐𝑏))) = (abs‘(𝑎𝑐𝑏)))
178170, 173, 1773eqtrd 2648 . . . . . . . . . . . . . 14 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) = (abs‘(𝑎𝑐𝑏)))
179178breq1d 4593 . . . . . . . . . . . . 13 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒 ↔ (abs‘(𝑎𝑐𝑏)) < 𝑒))
180145, 179imbi12d 333 . . . . . . . . . . . 12 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → ((((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒) ↔ (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝑒)))
1811802ralbidva 2971 . . . . . . . . . . 11 (𝑣𝐷 → (∀𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒) ↔ ∀𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝑒)))
182181rexbidv 3034 . . . . . . . . . 10 (𝑣𝐷 → (∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒) ↔ ∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝑒)))
183182ralbidv 2969 . . . . . . . . 9 (𝑣𝐷 → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒) ↔ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝑒)))
184120, 183mpbird 246 . . . . . . . 8 (𝑣𝐷 → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒))
185 cnxmet 22386 . . . . . . . . . . 11 (abs ∘ − ) ∈ (∞Met‘ℂ)
186185a1i 11 . . . . . . . . . 10 (𝑣𝐷 → (abs ∘ − ) ∈ (∞Met‘ℂ))
187 xmetres2 21976 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (0[,)+∞) ⊆ ℂ) → ((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))) ∈ (∞Met‘(0[,)+∞)))
188186, 3, 187sylancl 693 . . . . . . . . 9 (𝑣𝐷 → ((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))) ∈ (∞Met‘(0[,)+∞)))
189 xmetres2 21976 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐷 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷))
190186, 10, 189sylancl 693 . . . . . . . . 9 (𝑣𝐷 → ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷))
191121a1i 11 . . . . . . . . 9 (𝑣𝐷 → 0 ∈ (0[,)+∞))
192 id 22 . . . . . . . . 9 (𝑣𝐷𝑣𝐷)
193 eqid 2610 . . . . . . . . . . . . 13 ((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))) = ((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))
19418cnfldtopn 22395 . . . . . . . . . . . . 13 𝐽 = (MetOpen‘(abs ∘ − ))
195 eqid 2610 . . . . . . . . . . . . 13 (MetOpen‘((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))) = (MetOpen‘((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))))
196193, 194, 195metrest 22139 . . . . . . . . . . . 12 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (0[,)+∞) ⊆ ℂ) → (𝐽t (0[,)+∞)) = (MetOpen‘((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))))
197185, 3, 196mp2an 704 . . . . . . . . . . 11 (𝐽t (0[,)+∞)) = (MetOpen‘((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))))
19862, 197eqtri 2632 . . . . . . . . . 10 𝐾 = (MetOpen‘((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))))
199 eqid 2610 . . . . . . . . . . . . 13 ((abs ∘ − ) ↾ (𝐷 × 𝐷)) = ((abs ∘ − ) ↾ (𝐷 × 𝐷))
200 eqid 2610 . . . . . . . . . . . . 13 (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷)))
201199, 194, 200metrest 22139 . . . . . . . . . . . 12 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐽t 𝐷) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
202185, 10, 201mp2an 704 . . . . . . . . . . 11 (𝐽t 𝐷) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷)))
20335, 202eqtri 2632 . . . . . . . . . 10 𝐿 = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷)))
204198, 203, 194txmetcnp 22162 . . . . . . . . 9 (((((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))) ∈ (∞Met‘(0[,)+∞)) ∧ ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) ∧ (0 ∈ (0[,)+∞) ∧ 𝑣𝐷)) → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨0, 𝑣⟩) ↔ ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒))))
205188, 190, 186, 191, 192, 204syl32anc 1326 . . . . . . . 8 (𝑣𝐷 → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨0, 𝑣⟩) ↔ ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒))))
206116, 184, 205mpbir2and 959 . . . . . . 7 (𝑣𝐷 → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨0, 𝑣⟩))
207206ad2antlr 759 . . . . . 6 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 = 𝑢) → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨0, 𝑣⟩))
208 simpr 476 . . . . . . . 8 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 = 𝑢) → 0 = 𝑢)
209208opeq1d 4346 . . . . . . 7 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 = 𝑢) → ⟨0, 𝑣⟩ = ⟨𝑢, 𝑣⟩)
210209fveq2d 6107 . . . . . 6 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 = 𝑢) → (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨0, 𝑣⟩) = (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
211207, 210eleqtrd 2690 . . . . 5 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 = 𝑢) → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
21242simprbi 479 . . . . . . 7 (𝑢 ∈ (0[,)+∞) → 0 ≤ 𝑢)
213212adantr 480 . . . . . 6 ((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) → 0 ≤ 𝑢)
214 0re 9919 . . . . . . 7 0 ∈ ℝ
215 leloe 10003 . . . . . . 7 ((0 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (0 ≤ 𝑢 ↔ (0 < 𝑢 ∨ 0 = 𝑢)))
216214, 44, 215sylancr 694 . . . . . 6 ((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) → (0 ≤ 𝑢 ↔ (0 < 𝑢 ∨ 0 = 𝑢)))
217213, 216mpbid 221 . . . . 5 ((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) → (0 < 𝑢 ∨ 0 = 𝑢))
218115, 211, 217mpjaodan 823 . . . 4 ((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
219218rgen2 2958 . . 3 𝑢 ∈ (0[,)+∞)∀𝑣𝐷 (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩)
220 fveq2 6103 . . . . 5 (𝑧 = ⟨𝑢, 𝑣⟩ → (((𝐾 ×t 𝐿) CnP 𝐽)‘𝑧) = (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
221220eleq2d 2673 . . . 4 (𝑧 = ⟨𝑢, 𝑣⟩ → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘𝑧) ↔ (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩)))
222221ralxp 5185 . . 3 (∀𝑧 ∈ ((0[,)+∞) × 𝐷)(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘𝑧) ↔ ∀𝑢 ∈ (0[,)+∞)∀𝑣𝐷 (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
223219, 222mpbir 220 . 2 𝑧 ∈ ((0[,)+∞) × 𝐷)(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘𝑧)
224 cncnp 20894 . . 3 (((𝐾 ×t 𝐿) ∈ (TopOn‘((0[,)+∞) × 𝐷)) ∧ 𝐽 ∈ (TopOn‘ℂ)) → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽) ↔ ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ ∧ ∀𝑧 ∈ ((0[,)+∞) × 𝐷)(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘𝑧))))
22597, 19, 224mp2an 704 . 2 ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽) ↔ ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ ∧ ∀𝑧 ∈ ((0[,)+∞) × 𝐷)(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘𝑧)))
22617, 223, 225mpbir2an 957 1 (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  wss 3540  ifcif 4036  cop 4131   class class class wbr 4583   × cxp 5036  ccnv 5037  dom cdm 5038  ran crn 5039  cres 5040  cima 5041  ccom 5042   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  cc 9813  cr 9814  0cc0 9815  1c1 9816  +∞cpnf 9950   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  2c2 10947  +crp 11708  (,)cioo 12046  [,)cico 12048  cre 13685  abscabs 13822  t crest 15904  TopOpenctopn 15905  topGenctg 15921  ∞Metcxmt 19552  MetOpencmopn 19557  fldccnfld 19567  Topctop 20517  TopOnctopon 20518  intcnt 20631   Cn ccn 20838   CnP ccnp 20839   ×t ctx 21173  𝑐ccxp 24106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-tan 14641  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108
This theorem is referenced by:  resqrtcn  24290
  Copyright terms: Public domain W3C validator