MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restopnb Structured version   Visualization version   GIF version

Theorem restopnb 20789
Description: If 𝐵 is an open subset of the subspace base set 𝐴, then any subset of 𝐵 is open iff it is open in 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
restopnb (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → (𝐶𝐽𝐶 ∈ (𝐽t 𝐴)))

Proof of Theorem restopnb
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simpr3 1062 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → 𝐶𝐵)
2 simpr2 1061 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → 𝐵𝐴)
31, 2sstrd 3578 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → 𝐶𝐴)
4 df-ss 3554 . . . . . 6 (𝐶𝐴 ↔ (𝐶𝐴) = 𝐶)
53, 4sylib 207 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → (𝐶𝐴) = 𝐶)
65eqcomd 2616 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → 𝐶 = (𝐶𝐴))
7 ineq1 3769 . . . . . . 7 (𝑣 = 𝐶 → (𝑣𝐴) = (𝐶𝐴))
87eqeq2d 2620 . . . . . 6 (𝑣 = 𝐶 → (𝐶 = (𝑣𝐴) ↔ 𝐶 = (𝐶𝐴)))
98rspcev 3282 . . . . 5 ((𝐶𝐽𝐶 = (𝐶𝐴)) → ∃𝑣𝐽 𝐶 = (𝑣𝐴))
109expcom 450 . . . 4 (𝐶 = (𝐶𝐴) → (𝐶𝐽 → ∃𝑣𝐽 𝐶 = (𝑣𝐴)))
116, 10syl 17 . . 3 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → (𝐶𝐽 → ∃𝑣𝐽 𝐶 = (𝑣𝐴)))
12 inass 3785 . . . . . 6 ((𝑣𝐴) ∩ 𝐵) = (𝑣 ∩ (𝐴𝐵))
13 simprr 792 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → 𝐶 = (𝑣𝐴))
1413ineq1d 3775 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → (𝐶𝐵) = ((𝑣𝐴) ∩ 𝐵))
15 simplr3 1098 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ 𝑣𝐽) → 𝐶𝐵)
16 df-ss 3554 . . . . . . . . 9 (𝐶𝐵 ↔ (𝐶𝐵) = 𝐶)
1715, 16sylib 207 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ 𝑣𝐽) → (𝐶𝐵) = 𝐶)
1817adantrr 749 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → (𝐶𝐵) = 𝐶)
1914, 18eqtr3d 2646 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → ((𝑣𝐴) ∩ 𝐵) = 𝐶)
20 simplr2 1097 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ 𝑣𝐽) → 𝐵𝐴)
21 sseqin2 3779 . . . . . . . . 9 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐵)
2220, 21sylib 207 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ 𝑣𝐽) → (𝐴𝐵) = 𝐵)
2322ineq2d 3776 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ 𝑣𝐽) → (𝑣 ∩ (𝐴𝐵)) = (𝑣𝐵))
2423adantrr 749 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → (𝑣 ∩ (𝐴𝐵)) = (𝑣𝐵))
2512, 19, 243eqtr3a 2668 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → 𝐶 = (𝑣𝐵))
26 simplll 794 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → 𝐽 ∈ Top)
27 simprl 790 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → 𝑣𝐽)
28 simplr1 1096 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → 𝐵𝐽)
29 inopn 20529 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑣𝐽𝐵𝐽) → (𝑣𝐵) ∈ 𝐽)
3026, 27, 28, 29syl3anc 1318 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → (𝑣𝐵) ∈ 𝐽)
3125, 30eqeltrd 2688 . . . 4 ((((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) ∧ (𝑣𝐽𝐶 = (𝑣𝐴))) → 𝐶𝐽)
3231rexlimdvaa 3014 . . 3 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → (∃𝑣𝐽 𝐶 = (𝑣𝐴) → 𝐶𝐽))
3311, 32impbid 201 . 2 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → (𝐶𝐽 ↔ ∃𝑣𝐽 𝐶 = (𝑣𝐴)))
34 elrest 15911 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐶 ∈ (𝐽t 𝐴) ↔ ∃𝑣𝐽 𝐶 = (𝑣𝐴)))
3534adantr 480 . 2 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → (𝐶 ∈ (𝐽t 𝐴) ↔ ∃𝑣𝐽 𝐶 = (𝑣𝐴)))
3633, 35bitr4d 270 1 (((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → (𝐶𝐽𝐶 ∈ (𝐽t 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wrex 2897  cin 3539  wss 3540  (class class class)co 6549  t crest 15904  Topctop 20517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-rest 15906  df-top 20521
This theorem is referenced by:  restopn2  20791  cxpcn3  24289  pnfneige0  29325  fourierdlem62  39061  fouriersw  39124
  Copyright terms: Public domain W3C validator