Step | Hyp | Ref
| Expression |
1 | | simpr3 1062 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐶 ⊆ 𝐵) |
2 | | simpr2 1061 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐵 ⊆ 𝐴) |
3 | 1, 2 | sstrd 3578 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐶 ⊆ 𝐴) |
4 | | df-ss 3554 |
. . . . . 6
⊢ (𝐶 ⊆ 𝐴 ↔ (𝐶 ∩ 𝐴) = 𝐶) |
5 | 3, 4 | sylib 207 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → (𝐶 ∩ 𝐴) = 𝐶) |
6 | 5 | eqcomd 2616 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐶 = (𝐶 ∩ 𝐴)) |
7 | | ineq1 3769 |
. . . . . . 7
⊢ (𝑣 = 𝐶 → (𝑣 ∩ 𝐴) = (𝐶 ∩ 𝐴)) |
8 | 7 | eqeq2d 2620 |
. . . . . 6
⊢ (𝑣 = 𝐶 → (𝐶 = (𝑣 ∩ 𝐴) ↔ 𝐶 = (𝐶 ∩ 𝐴))) |
9 | 8 | rspcev 3282 |
. . . . 5
⊢ ((𝐶 ∈ 𝐽 ∧ 𝐶 = (𝐶 ∩ 𝐴)) → ∃𝑣 ∈ 𝐽 𝐶 = (𝑣 ∩ 𝐴)) |
10 | 9 | expcom 450 |
. . . 4
⊢ (𝐶 = (𝐶 ∩ 𝐴) → (𝐶 ∈ 𝐽 → ∃𝑣 ∈ 𝐽 𝐶 = (𝑣 ∩ 𝐴))) |
11 | 6, 10 | syl 17 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → (𝐶 ∈ 𝐽 → ∃𝑣 ∈ 𝐽 𝐶 = (𝑣 ∩ 𝐴))) |
12 | | inass 3785 |
. . . . . 6
⊢ ((𝑣 ∩ 𝐴) ∩ 𝐵) = (𝑣 ∩ (𝐴 ∩ 𝐵)) |
13 | | simprr 792 |
. . . . . . . 8
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → 𝐶 = (𝑣 ∩ 𝐴)) |
14 | 13 | ineq1d 3775 |
. . . . . . 7
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → (𝐶 ∩ 𝐵) = ((𝑣 ∩ 𝐴) ∩ 𝐵)) |
15 | | simplr3 1098 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ 𝑣 ∈ 𝐽) → 𝐶 ⊆ 𝐵) |
16 | | df-ss 3554 |
. . . . . . . . 9
⊢ (𝐶 ⊆ 𝐵 ↔ (𝐶 ∩ 𝐵) = 𝐶) |
17 | 15, 16 | sylib 207 |
. . . . . . . 8
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ 𝑣 ∈ 𝐽) → (𝐶 ∩ 𝐵) = 𝐶) |
18 | 17 | adantrr 749 |
. . . . . . 7
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → (𝐶 ∩ 𝐵) = 𝐶) |
19 | 14, 18 | eqtr3d 2646 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → ((𝑣 ∩ 𝐴) ∩ 𝐵) = 𝐶) |
20 | | simplr2 1097 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ 𝑣 ∈ 𝐽) → 𝐵 ⊆ 𝐴) |
21 | | sseqin2 3779 |
. . . . . . . . 9
⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐵) = 𝐵) |
22 | 20, 21 | sylib 207 |
. . . . . . . 8
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ 𝑣 ∈ 𝐽) → (𝐴 ∩ 𝐵) = 𝐵) |
23 | 22 | ineq2d 3776 |
. . . . . . 7
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ 𝑣 ∈ 𝐽) → (𝑣 ∩ (𝐴 ∩ 𝐵)) = (𝑣 ∩ 𝐵)) |
24 | 23 | adantrr 749 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → (𝑣 ∩ (𝐴 ∩ 𝐵)) = (𝑣 ∩ 𝐵)) |
25 | 12, 19, 24 | 3eqtr3a 2668 |
. . . . 5
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → 𝐶 = (𝑣 ∩ 𝐵)) |
26 | | simplll 794 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → 𝐽 ∈ Top) |
27 | | simprl 790 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → 𝑣 ∈ 𝐽) |
28 | | simplr1 1096 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → 𝐵 ∈ 𝐽) |
29 | | inopn 20529 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑣 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝑣 ∩ 𝐵) ∈ 𝐽) |
30 | 26, 27, 28, 29 | syl3anc 1318 |
. . . . 5
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → (𝑣 ∩ 𝐵) ∈ 𝐽) |
31 | 25, 30 | eqeltrd 2688 |
. . . 4
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) ∧ (𝑣 ∈ 𝐽 ∧ 𝐶 = (𝑣 ∩ 𝐴))) → 𝐶 ∈ 𝐽) |
32 | 31 | rexlimdvaa 3014 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → (∃𝑣 ∈ 𝐽 𝐶 = (𝑣 ∩ 𝐴) → 𝐶 ∈ 𝐽)) |
33 | 11, 32 | impbid 201 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → (𝐶 ∈ 𝐽 ↔ ∃𝑣 ∈ 𝐽 𝐶 = (𝑣 ∩ 𝐴))) |
34 | | elrest 15911 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐶 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑣 ∈ 𝐽 𝐶 = (𝑣 ∩ 𝐴))) |
35 | 34 | adantr 480 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → (𝐶 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑣 ∈ 𝐽 𝐶 = (𝑣 ∩ 𝐴))) |
36 | 33, 35 | bitr4d 270 |
1
⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊆ 𝐵)) → (𝐶 ∈ 𝐽 ↔ 𝐶 ∈ (𝐽 ↾t 𝐴))) |